{"title":"Novel Insights into the Immunotherapy-Based Treatment Strategy for Autoimmune Type 1 Diabetes","authors":"S. Rathod","doi":"10.3390/diabetology3010007","DOIUrl":null,"url":null,"abstract":"Type 1 diabetes (T1D) is an autoimmune disease characterized by the destruction of insulin-producing pancreatic β-cells by their own immune system, resulting in lifelong insulin deficiency. Continuous exogenous insulin replacement therapy is the current standard of care for T1D. Transplantation of primary pancreatic islets or the entire pancreas is a viable remedy for managing patients with autoimmune T1D. However, this strategy is not feasible due to several obstacles, including a scarcity of donors, islet cells, and poor vascular engraftment of islets post-transplantation, as well as the need for prolonged immune suppression. Innovative approaches must be developed to counteract pancreatic β-cell destruction and salvage endogenic insulin production, thereby regulating blood glucose levels. This review includes an overview of autoimmune T1D, immune cells involved in T1D pathophysiology, and immunotherapy-based strategies to treat and prevent autoimmune T1D. Recent immunotherapy progress toward targeting pancreatic islet-specific immune pathways tangled tolerance has fueled the advancement of therapies that may allow for the prevention or reversal of this autoimmune T1D while avoiding other adverse reactions associated with the previous attempt, which was mostly immunosuppressive. As a result, significant efforts are currently underway to improve the efficacy of immunotherapy-based approaches by leveraging the beneficial actions of immune cells, specifically effector CD4+, CD8+, and regulatory T cells. This review will provide an overview of currently available immune-based therapeutic options for T1D and will examine the growing evidence that supports the use of immune cell-based approaches to improve therapeutic outcomes in the prevention or reversal of autoimmune T1D.","PeriodicalId":72798,"journal":{"name":"Diabetology","volume":"5 1","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2022-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Diabetology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/diabetology3010007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 4
Abstract
Type 1 diabetes (T1D) is an autoimmune disease characterized by the destruction of insulin-producing pancreatic β-cells by their own immune system, resulting in lifelong insulin deficiency. Continuous exogenous insulin replacement therapy is the current standard of care for T1D. Transplantation of primary pancreatic islets or the entire pancreas is a viable remedy for managing patients with autoimmune T1D. However, this strategy is not feasible due to several obstacles, including a scarcity of donors, islet cells, and poor vascular engraftment of islets post-transplantation, as well as the need for prolonged immune suppression. Innovative approaches must be developed to counteract pancreatic β-cell destruction and salvage endogenic insulin production, thereby regulating blood glucose levels. This review includes an overview of autoimmune T1D, immune cells involved in T1D pathophysiology, and immunotherapy-based strategies to treat and prevent autoimmune T1D. Recent immunotherapy progress toward targeting pancreatic islet-specific immune pathways tangled tolerance has fueled the advancement of therapies that may allow for the prevention or reversal of this autoimmune T1D while avoiding other adverse reactions associated with the previous attempt, which was mostly immunosuppressive. As a result, significant efforts are currently underway to improve the efficacy of immunotherapy-based approaches by leveraging the beneficial actions of immune cells, specifically effector CD4+, CD8+, and regulatory T cells. This review will provide an overview of currently available immune-based therapeutic options for T1D and will examine the growing evidence that supports the use of immune cell-based approaches to improve therapeutic outcomes in the prevention or reversal of autoimmune T1D.