K. DevanP, C. Ramakrishnan, Bibin Chidambaranathan, S. Gopinath
{"title":"IMPROVISATION OF COMBUSTION BEHAVIOUR OF JOJOBA OIL DIESEL BLEND FUELLED DI DIESEL ENGINE BY ENGINE MODIFICATIONS SUCH AS MOP AND TBC","authors":"K. DevanP, C. Ramakrishnan, Bibin Chidambaranathan, S. Gopinath","doi":"10.30492/IJCCE.2021.138262.4393","DOIUrl":null,"url":null,"abstract":"To reduce the importance of fossil fuels, the identification of biofuels plays a vital role. The plant oil chosen for this study is novel plant oil named Jojoba oil (the botanical name is Simmondsia Chinensis). To utilise this type of oil in higher proportion with diesel, engine modifications were carried. The engine modifications include optimising salient operating parameters with Thermal Barrier Coating (TBC). Taguchi and Gray relational methods were used for finding the optimised values of salient operating parameters like injection pressure, compression ratio, injection timing and intake air temperature as 275 bar, 19.5 CR, 27.5 bTDC and 65˚C, respectively [1]. This has helped to combust the higher blends of jojoba oil, namely 60J, 70J and 80J, without adverse performance and emission characteristics. The fundamental aim of coating Aluminium oxide, Molybdenum and Titanium oxide (40%, 30% and 30%) on the inner surface of the piston crown and the cylinder head is to retain heat and thereby achieve higher thermal efficiency. Combustion, performance and emission analysis were done and found that 60% by volume of jojoba oil can be applied in a TBC engine which offers 11.5% higher BTE, 74.3% lower CO, 31.2% lower HC, 8.6% higher NOx and 25.9% lower smoke than 70% and 80% by volume of jojoba oil.","PeriodicalId":14572,"journal":{"name":"Iranian Journal of Chemistry & Chemical Engineering-international English Edition","volume":"16 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iranian Journal of Chemistry & Chemical Engineering-international English Edition","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.30492/IJCCE.2021.138262.4393","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
To reduce the importance of fossil fuels, the identification of biofuels plays a vital role. The plant oil chosen for this study is novel plant oil named Jojoba oil (the botanical name is Simmondsia Chinensis). To utilise this type of oil in higher proportion with diesel, engine modifications were carried. The engine modifications include optimising salient operating parameters with Thermal Barrier Coating (TBC). Taguchi and Gray relational methods were used for finding the optimised values of salient operating parameters like injection pressure, compression ratio, injection timing and intake air temperature as 275 bar, 19.5 CR, 27.5 bTDC and 65˚C, respectively [1]. This has helped to combust the higher blends of jojoba oil, namely 60J, 70J and 80J, without adverse performance and emission characteristics. The fundamental aim of coating Aluminium oxide, Molybdenum and Titanium oxide (40%, 30% and 30%) on the inner surface of the piston crown and the cylinder head is to retain heat and thereby achieve higher thermal efficiency. Combustion, performance and emission analysis were done and found that 60% by volume of jojoba oil can be applied in a TBC engine which offers 11.5% higher BTE, 74.3% lower CO, 31.2% lower HC, 8.6% higher NOx and 25.9% lower smoke than 70% and 80% by volume of jojoba oil.
期刊介绍:
The aim of the Iranian Journal of Chemistry and Chemical Engineering is to foster the growth of educational, scientific and Industrial Research activities among chemists and chemical engineers and to provide a medium for mutual communication and relations between Iranian academia and the industry on the one hand, and the world the scientific community on the other.