{"title":"Bilinear Hilbert transforms and (sub)bilinear maximal functions along convex curves","authors":"Junfeng Li, Haixia Yu","doi":"10.2140/PJM.2021.310.375","DOIUrl":null,"url":null,"abstract":"In this paper, we determine the $L^p(\\mathbb{R})\\times L^q(\\mathbb{R})\\rightarrow L^r(\\mathbb{R})$ boundedness of the bilinear Hilbert transform $H_{\\gamma}(f,g)$ along a convex curve $\\gamma$ $$H_{\\gamma}(f,g)(x):=\\mathrm{p.\\,v.}\\int_{-\\infty}^{\\infty}f(x-t)g(x-\\gamma(t)) \\,\\frac{\\textrm{d}t}{t},$$ where $p$, $q$, and $r$ satisfy $\\frac{1}{p}+\\frac{1}{q}=\\frac{1}{r}$, and $r>\\frac{1}{2}$, $p>1$, and $q>1$. Moreover, the same $L^p(\\mathbb{R})\\times L^q(\\mathbb{R})\\rightarrow L^r(\\mathbb{R})$ boundedness property holds for the corresponding (sub)bilinear maximal function $M_{\\gamma}(f,g)$ along a convex curve $\\gamma$ $$M_{\\gamma}(f,g)(x):=\\sup_{\\varepsilon>0}\\frac{1}{2\\varepsilon}\\int_{-\\varepsilon}^{\\varepsilon}|f(x-t)g(x-\\gamma(t))| \\,\\textrm{d}t.$$","PeriodicalId":8451,"journal":{"name":"arXiv: Classical Analysis and ODEs","volume":"57 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Classical Analysis and ODEs","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2140/PJM.2021.310.375","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
In this paper, we determine the $L^p(\mathbb{R})\times L^q(\mathbb{R})\rightarrow L^r(\mathbb{R})$ boundedness of the bilinear Hilbert transform $H_{\gamma}(f,g)$ along a convex curve $\gamma$ $$H_{\gamma}(f,g)(x):=\mathrm{p.\,v.}\int_{-\infty}^{\infty}f(x-t)g(x-\gamma(t)) \,\frac{\textrm{d}t}{t},$$ where $p$, $q$, and $r$ satisfy $\frac{1}{p}+\frac{1}{q}=\frac{1}{r}$, and $r>\frac{1}{2}$, $p>1$, and $q>1$. Moreover, the same $L^p(\mathbb{R})\times L^q(\mathbb{R})\rightarrow L^r(\mathbb{R})$ boundedness property holds for the corresponding (sub)bilinear maximal function $M_{\gamma}(f,g)$ along a convex curve $\gamma$ $$M_{\gamma}(f,g)(x):=\sup_{\varepsilon>0}\frac{1}{2\varepsilon}\int_{-\varepsilon}^{\varepsilon}|f(x-t)g(x-\gamma(t))| \,\textrm{d}t.$$