A. Sorokin, J. Kuzina, R. Askhadullin, V. V. Alekseev
{"title":"Study into the Physical Chemistry and Technology of Alkali Liquid Metal Coolantsn for Nuclear and Thermonuclear Power Plants","authors":"A. Sorokin, J. Kuzina, R. Askhadullin, V. V. Alekseev","doi":"10.26583/npe.2022.3.01","DOIUrl":null,"url":null,"abstract":"It is shown that, as the result of developing alkali liquid metal coolants, including sodium, eutectic sodium-potassium alloy, lithium and cesium, the scientific basis has been established for their application in nuclear power. The paper presents data from investigations of thermophysical, neutronic and physicochemical properties and characteristics of various alkali liquid metal coolants, the content of solid-phase and dissolved impurities in coolants, mass transport of impurities in circulation circuits with alkali liquid metal coolants, development of systems for removal of impurities, and control of the content of impurities in alkali liquid metal coolants. Alkali liquid metal coolants are considered as a part of a system that includes a structural material in contact with the coolant, and a gas space that compensates for the thermal expansion of the coolant. The state of the system is defined by the physicochemical properties of the system’s components. And the coolant and the structural materials also represent subsystems consisting of a base material, a coolant and impurities contained both in the material and in the coolant. It has been shown that each alkali liquid metal coolant has its own set of impurities that define its technology. It depends on the physicochemical properties of the solution of the structural material impurities and components in the coolant. Objectives have been formulated for investigating further alkali liquid metal coolants, as stemming from the need to improve the efficiency, environmental friendliness, reliability and safety, and for extending the life of nuclear power plants in operation or under design. Alkali liquid metals are promising candidate materials for being used in thermonuclear power not only as the coolant but also as the tritium breeding medium. These include, first of all, lithium and its eutectic alloy with lead (17 at. % of lithium). The possibility for using lithium or a lithium-lead alloy as a coolant in the blanket of the international thermonuclear power reactor is compared.","PeriodicalId":37826,"journal":{"name":"Izvestiya Wysshikh Uchebnykh Zawedeniy, Yadernaya Energetika","volume":"87 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Izvestiya Wysshikh Uchebnykh Zawedeniy, Yadernaya Energetika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26583/npe.2022.3.01","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Energy","Score":null,"Total":0}
引用次数: 1
Abstract
It is shown that, as the result of developing alkali liquid metal coolants, including sodium, eutectic sodium-potassium alloy, lithium and cesium, the scientific basis has been established for their application in nuclear power. The paper presents data from investigations of thermophysical, neutronic and physicochemical properties and characteristics of various alkali liquid metal coolants, the content of solid-phase and dissolved impurities in coolants, mass transport of impurities in circulation circuits with alkali liquid metal coolants, development of systems for removal of impurities, and control of the content of impurities in alkali liquid metal coolants. Alkali liquid metal coolants are considered as a part of a system that includes a structural material in contact with the coolant, and a gas space that compensates for the thermal expansion of the coolant. The state of the system is defined by the physicochemical properties of the system’s components. And the coolant and the structural materials also represent subsystems consisting of a base material, a coolant and impurities contained both in the material and in the coolant. It has been shown that each alkali liquid metal coolant has its own set of impurities that define its technology. It depends on the physicochemical properties of the solution of the structural material impurities and components in the coolant. Objectives have been formulated for investigating further alkali liquid metal coolants, as stemming from the need to improve the efficiency, environmental friendliness, reliability and safety, and for extending the life of nuclear power plants in operation or under design. Alkali liquid metals are promising candidate materials for being used in thermonuclear power not only as the coolant but also as the tritium breeding medium. These include, first of all, lithium and its eutectic alloy with lead (17 at. % of lithium). The possibility for using lithium or a lithium-lead alloy as a coolant in the blanket of the international thermonuclear power reactor is compared.
期刊介绍:
The scientific journal Izvestiya Wysshikh Uchebnykh Zawedeniy, Yadernaya Energetika is included in the Scopus database. Publisher country is RU. The main subject areas of published articles are Nuclear Energy and Engineering, Физика, Приборостроение, метрология и информационно-измерительные приборы и системы, Информатика, вычислительная техника и управление, Энергетика. Before sending a scientific article, we recommend you to read the section For authors. This will allow you to prepare an article better for publication, to make it more interesting for the readers and useful for the scientific community. By following these steps, you will greatly increase the likelihood of your scientific article publishing in journals included in international citation systems (e.g., Scopus). Then you may choose a different journal, select the journal included to list of SAC Russia journal list, or send your scientific work for review and publication.