Globally Optimal Energy Efficiency Maximization for Capacity-Limited Fronthaul Crans with Dynamic Power Amplifiers’ Efficiency

K. Nguyen, Quang-Doanh Vu, Le-Nam Tran, M. Juntti
{"title":"Globally Optimal Energy Efficiency Maximization for Capacity-Limited Fronthaul Crans with Dynamic Power Amplifiers’ Efficiency","authors":"K. Nguyen, Quang-Doanh Vu, Le-Nam Tran, M. Juntti","doi":"10.1109/ICASSP.2018.8461308","DOIUrl":null,"url":null,"abstract":"A joint beamforming and remote radio head (RRH)-user association design for downlink of cloud radio access networks (CRANs) is considered. The aim is to maximize the system energy efficiency subject to constraints on users' quality-of-service, capacity offronthaullinks and transmit power. Different to the conventional power consumption models, we embrace the dependence of baseband signal processing power on the data rate, and the dynamics of the power amplifiers' efficiency. The considered problem is a mixed Boolean nonconvex program whose optimal solution is difficult to find. As our main contribution, we provide a discrete branch-reduce-and-bound (DBRnB) approach to solve the problem globally. We also make some modifications to the standard DBRnB procedure. Those remarkably improve the convergence performance. Numerical results are provided to confirm the validity of the proposed method.","PeriodicalId":6638,"journal":{"name":"2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":"346 1","pages":"3759-3763"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.2018.8461308","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

A joint beamforming and remote radio head (RRH)-user association design for downlink of cloud radio access networks (CRANs) is considered. The aim is to maximize the system energy efficiency subject to constraints on users' quality-of-service, capacity offronthaullinks and transmit power. Different to the conventional power consumption models, we embrace the dependence of baseband signal processing power on the data rate, and the dynamics of the power amplifiers' efficiency. The considered problem is a mixed Boolean nonconvex program whose optimal solution is difficult to find. As our main contribution, we provide a discrete branch-reduce-and-bound (DBRnB) approach to solve the problem globally. We also make some modifications to the standard DBRnB procedure. Those remarkably improve the convergence performance. Numerical results are provided to confirm the validity of the proposed method.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于动态功率放大器效率的有限容量前传起重机全局最优能效最大化
研究了一种用于云无线接入网下行链路的联合波束形成和远程无线电头(RRH)用户关联设计。其目的是在受用户服务质量、前路容量和传输功率限制的情况下,最大限度地提高系统能源效率。与传统的功耗模型不同,我们考虑了基带信号处理能力与数据速率的关系,以及功率放大器效率的动态变化。所考虑的问题是一个难以找到最优解的混合布尔非凸规划。作为我们的主要贡献,我们提供了一个离散分支约界(DBRnB)方法来解决全局问题。我们还对标准DBRnB程序做了一些修改。显著提高了收敛性能。数值结果验证了所提方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Reduced Dimension Minimum BER PSK Precoding for Constrained Transmit Signals in Massive MIMO Low Complexity Joint RDO of Prediction Units Couples for HEVC Intra Coding Non-Native Children Speech Recognition Through Transfer Learning Synthesis of Images by Two-Stage Generative Adversarial Networks Statistical T+2d Subband Modelling for Crowd Counting
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1