Evaluation of electron temperature and electron density of laser-ablated Zr plasma by Langmuir probe characterization and its correlation with surface modifications
Zul Irfan, S. Bashir, S. Butt, Asma Hayat, R. Ayub, K. Mahmood, M. Akram, Amna Batool
{"title":"Evaluation of electron temperature and electron density of laser-ablated Zr plasma by Langmuir probe characterization and its correlation with surface modifications","authors":"Zul Irfan, S. Bashir, S. Butt, Asma Hayat, R. Ayub, K. Mahmood, M. Akram, Amna Batool","doi":"10.1017/s026303462000004x","DOIUrl":null,"url":null,"abstract":"The plasma parameters of laser-ablated Zirconium (Zr) using a Langmuir probe technique have been investigated by employing a Q-switched Nd:YAG laser (532 nm, 6 ns) at various irradiances ranging from 8.6 to 15.5 GW/cm 2 . All the measurements have been performed under an ultra-high vacuum condition while keeping the probe at a fixed distance of 4 mm from the target. By varying the biasing voltages from 1 to 75 V, the corresponding values of electric currents are measured by the probe on the oscilloscope. Laser-induced Zr plasma parameters such as electron temperature, electron number density, plasma potential, Debye length, and thermal velocity have been evaluated from I–V characteristic curves of Langmuir probe data. It is found that both the electron temperature and thermal velocity of Zr plasma reveal an increasing trend from 18 to 41 eV and 2.8 × 10 8 to 4.3 × 10 8 cm/s, respectively, with increasing laser irradiance which is attributed to more energy deposition and enhanced ablation rate. However, the electron number density of Zr plasma exhibits a non-significant increase from 6.5 × 10 14 to 6.7 × 10 14 cm −3 with increasing irradiance from 8.6 to 10.9 GW/cm 2 . A further increase in irradiance from 12 to 15.5 GW/cm 2 causes a reduction in the number density of Zr plasma from 6.1 × 10 14 to 5.6 × 10 14 cm −3 which is attributed to the formation of thick sheath, ambipolar electric field, and laser-supported detonation waves (Shock front). Scanning electron microscope analysis has been performed to reveal the surface morphology of irradiated Zr. It reveals the formation of cracks, ridges, cones, and grains. It was observed at high irradiances the ridges are vanished, whereas cones and cracks are dominant features. By controlling plasma parameters, surface structuring of materials can be controlled, which has a vast range of applications in the industry and medicine.","PeriodicalId":49925,"journal":{"name":"Laser and Particle Beams","volume":"58 1","pages":"84-93"},"PeriodicalIF":1.1000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Laser and Particle Beams","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1017/s026303462000004x","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 1
Abstract
The plasma parameters of laser-ablated Zirconium (Zr) using a Langmuir probe technique have been investigated by employing a Q-switched Nd:YAG laser (532 nm, 6 ns) at various irradiances ranging from 8.6 to 15.5 GW/cm 2 . All the measurements have been performed under an ultra-high vacuum condition while keeping the probe at a fixed distance of 4 mm from the target. By varying the biasing voltages from 1 to 75 V, the corresponding values of electric currents are measured by the probe on the oscilloscope. Laser-induced Zr plasma parameters such as electron temperature, electron number density, plasma potential, Debye length, and thermal velocity have been evaluated from I–V characteristic curves of Langmuir probe data. It is found that both the electron temperature and thermal velocity of Zr plasma reveal an increasing trend from 18 to 41 eV and 2.8 × 10 8 to 4.3 × 10 8 cm/s, respectively, with increasing laser irradiance which is attributed to more energy deposition and enhanced ablation rate. However, the electron number density of Zr plasma exhibits a non-significant increase from 6.5 × 10 14 to 6.7 × 10 14 cm −3 with increasing irradiance from 8.6 to 10.9 GW/cm 2 . A further increase in irradiance from 12 to 15.5 GW/cm 2 causes a reduction in the number density of Zr plasma from 6.1 × 10 14 to 5.6 × 10 14 cm −3 which is attributed to the formation of thick sheath, ambipolar electric field, and laser-supported detonation waves (Shock front). Scanning electron microscope analysis has been performed to reveal the surface morphology of irradiated Zr. It reveals the formation of cracks, ridges, cones, and grains. It was observed at high irradiances the ridges are vanished, whereas cones and cracks are dominant features. By controlling plasma parameters, surface structuring of materials can be controlled, which has a vast range of applications in the industry and medicine.
期刊介绍:
Laser and Particle Beams is an international journal which deals with basic physics issues of intense laser and particle beams, and the interaction of these beams with matter. Research on pulse power technology associated with beam generation is also of strong interest. Subjects covered include the physics of high energy densities; non-LTE phenomena; hot dense matter and related atomic, plasma and hydrodynamic physics and astrophysics; intense sources of coherent radiation; high current particle accelerators; beam-wave interaction; and pulsed power technology.