Specificity of separate dispersed phase particles from flue gas flows by perfo-rated filter barrier

D. S. Protsko, S. Panov, E. Shipilova, O. M. Belykh, A. Khvostov
{"title":"Specificity of separate dispersed phase particles from flue gas flows by perfo-rated filter barrier","authors":"D. S. Protsko, S. Panov, E. Shipilova, O. M. Belykh, A. Khvostov","doi":"10.20914/2310-1202-2021-4-295-301","DOIUrl":null,"url":null,"abstract":"The vector of industrial development at the present stage is associated with a further increase in energy needs, which is associated with the modernization of existing and the development of new energy-efficient generating equipment. A significant share in the energy balance is still occupied by power plants that use fuel combustion and have significant environmental costs. The results of a theoretical and experimental study of the mechanisms of trapping flue gas particles of power plants by perforated filter baffles in order to reduce the load of emissions on the atmosphere are presented. Formulas for calculating the trapping coefficient under the action of various particle trapping mechanisms are systematized and proposed. The dominant role of the inertial trapping mechanism (?Stk) at the beginning of the filtration process and the gearing effect (?R) in the subsequent stage is determined. The issues of formation of the sediment layer require taking into account the adhesive properties of materials (parameter T) and the introduction of an effective Stokes coefficient (Stkeff). A special role is noted for increasing the efficiency of deposition of flue gas particles under the action of an electrostatic field (?E). In the future, the obtained research results can be used in the development and design of combined gas cleaning devices using the combined action of filtration and the action of an electrostatic field.","PeriodicalId":20611,"journal":{"name":"Proceedings of the Voronezh State University of Engineering Technologies","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Voronezh State University of Engineering Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20914/2310-1202-2021-4-295-301","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The vector of industrial development at the present stage is associated with a further increase in energy needs, which is associated with the modernization of existing and the development of new energy-efficient generating equipment. A significant share in the energy balance is still occupied by power plants that use fuel combustion and have significant environmental costs. The results of a theoretical and experimental study of the mechanisms of trapping flue gas particles of power plants by perforated filter baffles in order to reduce the load of emissions on the atmosphere are presented. Formulas for calculating the trapping coefficient under the action of various particle trapping mechanisms are systematized and proposed. The dominant role of the inertial trapping mechanism (?Stk) at the beginning of the filtration process and the gearing effect (?R) in the subsequent stage is determined. The issues of formation of the sediment layer require taking into account the adhesive properties of materials (parameter T) and the introduction of an effective Stokes coefficient (Stkeff). A special role is noted for increasing the efficiency of deposition of flue gas particles under the action of an electrostatic field (?E). In the future, the obtained research results can be used in the development and design of combined gas cleaning devices using the combined action of filtration and the action of an electrostatic field.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过穿孔过滤器屏障从烟气流中分离分散相颗粒的特异性
现阶段工业发展的方向与能源需求的进一步增加有关,而能源需求又与现有的现代化和发展新的节能发电设备有关。在能源平衡中,相当大的份额仍然由使用燃料燃烧的发电厂占据,这些发电厂的环境成本很高。本文介绍了利用多孔过滤挡板捕集电厂烟气颗粒以减少大气排放负荷的机理的理论和实验研究结果。系统地提出了在各种粒子捕获机制作用下的捕获系数计算公式。确定了惯性捕集机制(Stk)在过滤初期的主导作用和后续阶段的传动效应(R)。沉积层的形成问题需要考虑材料的粘接特性(参数T)和引入有效的Stokes系数(Stkeff)。注意到在静电场(?E)作用下提高烟气颗粒沉积效率的特殊作用。在未来,所获得的研究成果可用于利用过滤和静电场联合作用的联合气体净化装置的开发和设计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Research of the possibility of using petroleum coke in the production of crushed carbon sorbents Effect of food additives on the structure of the dough Formation of innovative industry development Tomatoes: main uses in the food industry (review) Current trends in the sustainable development of an "accessible environment" in railway transport
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1