Explainability Methods for Graph Convolutional Neural Networks

Phillip E. Pope, Soheil Kolouri, Mohammad Rostami, Charles E. Martin, Heiko Hoffmann
{"title":"Explainability Methods for Graph Convolutional Neural Networks","authors":"Phillip E. Pope, Soheil Kolouri, Mohammad Rostami, Charles E. Martin, Heiko Hoffmann","doi":"10.1109/CVPR.2019.01103","DOIUrl":null,"url":null,"abstract":"With the growing use of graph convolutional neural networks (GCNNs) comes the need for explainability. In this paper, we introduce explainability methods for GCNNs. We develop the graph analogues of three prominent explainability methods for convolutional neural networks: contrastive gradient-based (CG) saliency maps, Class Activation Mapping (CAM), and Excitation Back-Propagation (EB) and their variants, gradient-weighted CAM (Grad-CAM) and contrastive EB (c-EB). We show a proof-of-concept of these methods on classification problems in two application domains: visual scene graphs and molecular graphs. To compare the methods, we identify three desirable properties of explanations: (1) their importance to classification, as measured by the impact of occlusions, (2) their contrastivity with respect to different classes, and (3) their sparseness on a graph. We call the corresponding quantitative metrics fidelity, contrastivity, and sparsity and evaluate them for each method. Lastly, we analyze the salient subgraphs obtained from explanations and report frequently occurring patterns.","PeriodicalId":6711,"journal":{"name":"2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)","volume":"1 1","pages":"10764-10773"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"326","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.2019.01103","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 326

Abstract

With the growing use of graph convolutional neural networks (GCNNs) comes the need for explainability. In this paper, we introduce explainability methods for GCNNs. We develop the graph analogues of three prominent explainability methods for convolutional neural networks: contrastive gradient-based (CG) saliency maps, Class Activation Mapping (CAM), and Excitation Back-Propagation (EB) and their variants, gradient-weighted CAM (Grad-CAM) and contrastive EB (c-EB). We show a proof-of-concept of these methods on classification problems in two application domains: visual scene graphs and molecular graphs. To compare the methods, we identify three desirable properties of explanations: (1) their importance to classification, as measured by the impact of occlusions, (2) their contrastivity with respect to different classes, and (3) their sparseness on a graph. We call the corresponding quantitative metrics fidelity, contrastivity, and sparsity and evaluate them for each method. Lastly, we analyze the salient subgraphs obtained from explanations and report frequently occurring patterns.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
图卷积神经网络的可解释性方法
随着图卷积神经网络(GCNNs)的应用越来越广泛,对可解释性的需求也随之而来。在本文中,我们介绍了gcnn的可解释性方法。我们开发了卷积神经网络三种突出的可解释性方法的图类似物:基于梯度的对比显著性图(CG),类激活映射(CAM)和激励反向传播(EB)及其变体,梯度加权的CAM (Grad-CAM)和对比EB (c-EB)。我们在视觉场景图和分子图两个应用领域展示了这些方法在分类问题上的概念证明。为了比较这些方法,我们确定了三个理想的解释属性:(1)它们对分类的重要性,通过遮挡的影响来衡量,(2)它们相对于不同类别的对比性,以及(3)它们在图上的稀疏性。我们将相应的定量度量称为保真度、对比性和稀疏性,并对每种方法进行评估。最后,我们分析了从解释中得到的显著子图,并报告了频繁出现的模式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Multi-Level Context Ultra-Aggregation for Stereo Matching Leveraging Heterogeneous Auxiliary Tasks to Assist Crowd Counting Incremental Object Learning From Contiguous Views Progressive Teacher-Student Learning for Early Action Prediction Inverse Discriminative Networks for Handwritten Signature Verification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1