Application of SOM neural network in fault diagnosis of the steam turbine regenerative system

Jun-Fen Wu, Niansu Hu, Sheng Hu, Yu Zhao
{"title":"Application of SOM neural network in fault diagnosis of the steam turbine regenerative system","authors":"Jun-Fen Wu, Niansu Hu, Sheng Hu, Yu Zhao","doi":"10.1109/ICMLC.2002.1176735","DOIUrl":null,"url":null,"abstract":"The steam turbine regenerative system is one of the most important and complicated thermodynamic systems. The SOM (self-organizing map) neural network is applied to fault diagnosis of the system, which is implemented by the neural network toolbox in MATLAB. The method for fault diagnosis of the regenerative system is effective and it has been verified by simulation results.","PeriodicalId":90702,"journal":{"name":"Proceedings. International Conference on Machine Learning and Cybernetics","volume":"22 1","pages":"184-187 vol.1"},"PeriodicalIF":0.0000,"publicationDate":"2002-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. International Conference on Machine Learning and Cybernetics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLC.2002.1176735","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

Abstract

The steam turbine regenerative system is one of the most important and complicated thermodynamic systems. The SOM (self-organizing map) neural network is applied to fault diagnosis of the system, which is implemented by the neural network toolbox in MATLAB. The method for fault diagnosis of the regenerative system is effective and it has been verified by simulation results.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
SOM神经网络在汽轮机回热系统故障诊断中的应用
汽轮机蓄热系统是最重要、最复杂的热力系统之一。将自组织映射(SOM)神经网络应用于系统的故障诊断,并利用MATLAB中的神经网络工具箱实现故障诊断。该方法对再生系统的故障诊断是有效的,仿真结果验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Plenary Talk: Digital-Twin Fluid Engineering APPLYING MACHINE LEARNING TECHNIQUES IN DETECTING BACTERIAL VAGINOSIS. OPTICAL COHERENCE TOMOGRAPHY HEART TUBE IMAGE DENOISING BASED ON CONTOURLET TRANSFORM. The multistage support vector machine Anti-control of chaos based on fuzzy neural networks inverse system method
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1