Andrew P. Osborne, Jian Zhang, M. Simpson, K. Howard, S. Cocks
{"title":"Application of Machine Learning Techniques to Im prove Multi-Radar Multi-Sensor (MRMS) Precipitation Estimates in the Western United States","authors":"Andrew P. Osborne, Jian Zhang, M. Simpson, K. Howard, S. Cocks","doi":"10.1175/aies-d-22-0053.1","DOIUrl":null,"url":null,"abstract":"\nThe Multi-Radar Multi-Sensor (MRMS) system produces a suite of hydrometeorological products that are widely used for applications such as flash flood warning operations, water resource management, and climatological studies. The MRMS radar-based quantitative precipitation estimation (QPE) products have greater challenges in the western United States compared to the eastern two-thirds of the CONUS due to terrain-related blockages and gaps in radar coverage. Further, orographic enhancement of precipitation often occurs, which is highly variable in space and time and difficult to accurately capture with physically-based approaches. A deep learning approach was applied in this study to understand the correlations between several interacting variables and to obtain a more accurate precipitation estimation in these scenarios. The model presented here is a convolutional neural network (CNN), which uses spatial information from small grids of several radar variables to predict an estimated precipitation value at the central grid point. Several case analyses are presented along with a year-long statistical evaluation. The CNN model 24-hour QPE shows higher accuracy than the MRMS radar QPE for several cool-season atmospheric river events. Areas of consistent improvement from the CNN model are highlighted in the discussion along with areas where the model can be further improved. The initial findings from this work help set the foundation for further exploration of machine learning techniques and products for precipitation estimation as part of the MRMS operational system.","PeriodicalId":94369,"journal":{"name":"Artificial intelligence for the earth systems","volume":"100 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial intelligence for the earth systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1175/aies-d-22-0053.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The Multi-Radar Multi-Sensor (MRMS) system produces a suite of hydrometeorological products that are widely used for applications such as flash flood warning operations, water resource management, and climatological studies. The MRMS radar-based quantitative precipitation estimation (QPE) products have greater challenges in the western United States compared to the eastern two-thirds of the CONUS due to terrain-related blockages and gaps in radar coverage. Further, orographic enhancement of precipitation often occurs, which is highly variable in space and time and difficult to accurately capture with physically-based approaches. A deep learning approach was applied in this study to understand the correlations between several interacting variables and to obtain a more accurate precipitation estimation in these scenarios. The model presented here is a convolutional neural network (CNN), which uses spatial information from small grids of several radar variables to predict an estimated precipitation value at the central grid point. Several case analyses are presented along with a year-long statistical evaluation. The CNN model 24-hour QPE shows higher accuracy than the MRMS radar QPE for several cool-season atmospheric river events. Areas of consistent improvement from the CNN model are highlighted in the discussion along with areas where the model can be further improved. The initial findings from this work help set the foundation for further exploration of machine learning techniques and products for precipitation estimation as part of the MRMS operational system.