Influence of Parameters in Kalman-filter-based Method on Image Quality for Electrical Capacitance Tomography

Ying Wang, Lijun Xu, Shijie Sun, Xupeng Lu, Jiangtao Sun
{"title":"Influence of Parameters in Kalman-filter-based Method on Image Quality for Electrical Capacitance Tomography","authors":"Ying Wang, Lijun Xu, Shijie Sun, Xupeng Lu, Jiangtao Sun","doi":"10.1109/I2MTC50364.2021.9459913","DOIUrl":null,"url":null,"abstract":"As a powerful tool to get a recursive solution of least squares estimation, the Kalman filter has been used for image reconstruction in Electrical Capacitance Tomography (ECT). In the Kalman-filter-based image reconstruction method, some key parameters, e.g., initial guess, observation noise covariance and initial estimate error covariance, greatly influence the performance of the method. Inappropriate values of these parameters may cause a series of problems, such as lower convergence rate, artifacts, or filter divergence. This paper aims to analyze the influence of the parameters on the image quality for ECT and guide the selection of the parameters. Numerical simulation and experiment were carried out and the results show that with an initial guess obtained by linear back projection (LBP) method and a good match of observation noise covariance and initial estimate error covariance, the performance of the Kalman-filter-based method can be improved.","PeriodicalId":6772,"journal":{"name":"2021 IEEE International Instrumentation and Measurement Technology Conference (I2MTC)","volume":"5 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2021-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Instrumentation and Measurement Technology Conference (I2MTC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/I2MTC50364.2021.9459913","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

As a powerful tool to get a recursive solution of least squares estimation, the Kalman filter has been used for image reconstruction in Electrical Capacitance Tomography (ECT). In the Kalman-filter-based image reconstruction method, some key parameters, e.g., initial guess, observation noise covariance and initial estimate error covariance, greatly influence the performance of the method. Inappropriate values of these parameters may cause a series of problems, such as lower convergence rate, artifacts, or filter divergence. This paper aims to analyze the influence of the parameters on the image quality for ECT and guide the selection of the parameters. Numerical simulation and experiment were carried out and the results show that with an initial guess obtained by linear back projection (LBP) method and a good match of observation noise covariance and initial estimate error covariance, the performance of the Kalman-filter-based method can be improved.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于卡尔曼滤波的电容层析成像方法参数对图像质量的影响
卡尔曼滤波作为求解最小二乘估计递推解的有力工具,已被用于电容层析成像(ECT)的图像重建。在基于卡尔曼滤波的图像重建方法中,初始猜想、观测噪声协方差和初始估计误差协方差等关键参数对方法的性能影响很大。这些参数的取值不合适可能会导致收敛速度降低、伪影或滤波器发散等一系列问题。本文旨在分析参数对ECT图像质量的影响,指导参数的选择。数值模拟和实验结果表明,利用线性反投影(LBP)方法得到的初始猜测值,以及观测噪声协方差与初始估计误差协方差的良好匹配,可以提高基于卡尔曼滤波方法的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Chipless RFID Tags as Microwave Sensors for Delamination Detection in Layered Structures. Microwave Quantification of Porosity Level in 3D Printed Polymers Fast Transient Harmonic Selective Extraction Based on Modulation-CDSC-SDFT A UWB-based localization system: analysis of the effect of anchor positions and robustness enhancement in indoor environments Miniaturised bidirectional acoustic tag to enhance marine animal tracking studies
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1