M. M. Owen, E. O. Achukwu, I. Arukalam, Mustakimah Muhammad, A. Z. Romli
{"title":"Effect of processing temperatures on the thermal and mechanical properties of leather waste-ABS composites","authors":"M. M. Owen, E. O. Achukwu, I. Arukalam, Mustakimah Muhammad, A. Z. Romli","doi":"10.1177/26349833211060056","DOIUrl":null,"url":null,"abstract":"The effect of varying processing temperatures (200, 220 and 240°C) on the thermal and mechanical properties of uncoated and epoxy-coated chrome-tanned leather wastes-ABS composites has been studied. The results obtained showed that the mechanical properties of the composites decreased as the processing temperature increased. Epoxy-coated leather wastes fibre-ABS (CLWABS) composite yielded better mechanical properties compared to the uncoated leather wastes-ABS composite (LWABS). These results were obtained at an optimized processing temperature of 200°C. Furthermore, the results were confirmed by the field emission scanning electron microscopy (FESEM) studies. The differential scanning calorimetry (DSC) studies revealed that the epoxy-coated leather wastes fibres (CLW) showed higher onset and melting temperatures of 131.8 and 179.35°C than the uncoated leather wastes fibres (LW) with glass transition (Tg) and melting (Tm) temperatures of 128.2 and 169.4°C, respectively. When the LW and CLW fibres were mixed with Acrylonitrile butadiene styrene (ABS), the Tg and Tm of CLWABS composite were found to be 94.9 and 269.8°C, respectively, higher than the LWABS composite with Tg and Tm of 89.1 and 261.6°C, respectively. Thus, this study has demonstrated that utilization of epoxy-coated chrome-tanned leather wastes fibres as fillers in the design of ABS-based composites will help a great deal in addressing the problem of solid waste pollutants in our environment.","PeriodicalId":10608,"journal":{"name":"Composites and Advanced Materials","volume":"21 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composites and Advanced Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/26349833211060056","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
The effect of varying processing temperatures (200, 220 and 240°C) on the thermal and mechanical properties of uncoated and epoxy-coated chrome-tanned leather wastes-ABS composites has been studied. The results obtained showed that the mechanical properties of the composites decreased as the processing temperature increased. Epoxy-coated leather wastes fibre-ABS (CLWABS) composite yielded better mechanical properties compared to the uncoated leather wastes-ABS composite (LWABS). These results were obtained at an optimized processing temperature of 200°C. Furthermore, the results were confirmed by the field emission scanning electron microscopy (FESEM) studies. The differential scanning calorimetry (DSC) studies revealed that the epoxy-coated leather wastes fibres (CLW) showed higher onset and melting temperatures of 131.8 and 179.35°C than the uncoated leather wastes fibres (LW) with glass transition (Tg) and melting (Tm) temperatures of 128.2 and 169.4°C, respectively. When the LW and CLW fibres were mixed with Acrylonitrile butadiene styrene (ABS), the Tg and Tm of CLWABS composite were found to be 94.9 and 269.8°C, respectively, higher than the LWABS composite with Tg and Tm of 89.1 and 261.6°C, respectively. Thus, this study has demonstrated that utilization of epoxy-coated chrome-tanned leather wastes fibres as fillers in the design of ABS-based composites will help a great deal in addressing the problem of solid waste pollutants in our environment.