One Engine To Serve 'em All: Inferring Taint Rules Without Architectural Semantics

Zheng Leong Chua, Yanhao Wang, Teodora Baluta, P. Saxena, Zhenkai Liang, Purui Su
{"title":"One Engine To Serve 'em All: Inferring Taint Rules Without Architectural Semantics","authors":"Zheng Leong Chua, Yanhao Wang, Teodora Baluta, P. Saxena, Zhenkai Liang, Purui Su","doi":"10.14722/ndss.2019.23339","DOIUrl":null,"url":null,"abstract":"Dynamic binary taint analysis has wide applications in the security analysis of commercial-off-the-shelf (COTS) binaries. One of the key challenges in dynamic binary analysis is to specify the taint rules that capture how taint information propagates for each instruction on an architecture. Most of the existing solutions specify taint rules using a deductive approach by summarizing the rules manually after analyzing the instruction semantics. Intuitively, taint propagation reflects on how an instruction input affects its output, and thus can be observed from instruction executions. In this work, we propose an inductive method for taint propagation and develop a universal taint tracking engine that is architecture-agnostic. Our taint engine, TAINTINDUCE, can learn taint rules with minimal architectural knowledge by observing the execution behavior of instructions. To measure its correctness and guide taint rule generation, we define the precise notion of soundness for bit-level taint tracking in this novel setup. In our evaluation, we show that TAINTINDUCE automatically learns rules for 4 widely used architectures: x86, x64, AArch64, and MIPS-I. It can detect vulnerabilities for 24 CVEs in 15 applications on both Linux and Windows over millions of instructions and is comparable with other mature existing tools (TEMU [51], libdft [32], Triton [42]). TAINTINDUCE can be used as a stand-alone taint engine or be used to complement existing taint engines for unhandled instructions. Further, it can be used as a cross-referencing tool to uncover bugs in taint engines, emulation implementations and ISA documentations.","PeriodicalId":20444,"journal":{"name":"Proceedings 2019 Network and Distributed System Security Symposium","volume":"2 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"30","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 2019 Network and Distributed System Security Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14722/ndss.2019.23339","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 30

Abstract

Dynamic binary taint analysis has wide applications in the security analysis of commercial-off-the-shelf (COTS) binaries. One of the key challenges in dynamic binary analysis is to specify the taint rules that capture how taint information propagates for each instruction on an architecture. Most of the existing solutions specify taint rules using a deductive approach by summarizing the rules manually after analyzing the instruction semantics. Intuitively, taint propagation reflects on how an instruction input affects its output, and thus can be observed from instruction executions. In this work, we propose an inductive method for taint propagation and develop a universal taint tracking engine that is architecture-agnostic. Our taint engine, TAINTINDUCE, can learn taint rules with minimal architectural knowledge by observing the execution behavior of instructions. To measure its correctness and guide taint rule generation, we define the precise notion of soundness for bit-level taint tracking in this novel setup. In our evaluation, we show that TAINTINDUCE automatically learns rules for 4 widely used architectures: x86, x64, AArch64, and MIPS-I. It can detect vulnerabilities for 24 CVEs in 15 applications on both Linux and Windows over millions of instructions and is comparable with other mature existing tools (TEMU [51], libdft [32], Triton [42]). TAINTINDUCE can be used as a stand-alone taint engine or be used to complement existing taint engines for unhandled instructions. Further, it can be used as a cross-referencing tool to uncover bugs in taint engines, emulation implementations and ISA documentations.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一个服务于所有人的引擎:在没有架构语义的情况下推断污染规则
动态二进制污点分析在商用现货(COTS)二进制文件的安全性分析中有着广泛的应用。动态二进制分析中的关键挑战之一是指定污染规则,这些规则捕获污染信息如何为体系结构上的每个指令传播。现有的大多数解决方案在分析指令语义后,通过手动总结规则,使用演绎法指定污染规则。直观地说,污染传播反映了指令输入如何影响其输出,因此可以从指令执行中观察到。在这项工作中,我们提出了一种对污染传播的归纳方法,并开发了一种与架构无关的通用污染跟踪引擎。我们的污染引擎taintinduction可以通过观察指令的执行行为,以最少的体系结构知识来学习污染规则。为了测量其正确性并指导污染规则的生成,我们在这种新设置中定义了位级污染跟踪的精确可靠性概念。在我们的评估中,我们展示了taintinduction自动学习4种广泛使用的体系结构的规则:x86、x64、AArch64和MIPS-I。它可以在Linux和Windows的15个应用程序中检测数百万条指令的24个cve漏洞,与其他成熟的现有工具(TEMU [51], libdft [32], Triton[42])相当。taint诱使可以用作一个独立的污染引擎或被用来补充现有的污染引擎未处理的指令。此外,它还可以用作交叉引用工具,以发现污染引擎、仿真实现和ISA文档中的错误。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Network and System Security: 17th International Conference, NSS 2023, Canterbury, UK, August 14–16, 2023, Proceedings Network and System Security: 16th International Conference, NSS 2022, Denarau Island, Fiji, December 9–12, 2022, Proceedings Network and System Security: 15th International Conference, NSS 2021, Tianjin, China, October 23, 2021, Proceedings Network and System Security: 14th International Conference, NSS 2020, Melbourne, VIC, Australia, November 25–27, 2020, Proceedings Neuro-Symbolic Execution: Augmenting Symbolic Execution with Neural Constraints
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1