{"title":"Estimating the Efforts of Mobile Application Development in the Planning Phase Using Nonlinear Regression Analysis","authors":"S. Prykhodko, N. Prykhodko, K. Knyrik","doi":"10.2478/acss-2020-0019","DOIUrl":null,"url":null,"abstract":"Abstract The authors consider the construction of a nonlinear multiple regression model, its confidence and prediction intervals to evaluate the efforts of mobile application development in the planning phase based on the multivariate normalizing transformation and outlier detection. The constructed model is compared to the linear regression model and nonlinear regression models based on the univariate transformations, such as the decimal logarithm, Box–Cox, and Johnson transformation. This model, in comparison with other regression models, has better prediction accuracy.","PeriodicalId":41960,"journal":{"name":"Applied Computer Systems","volume":"572 1","pages":"172 - 179"},"PeriodicalIF":0.5000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Computer Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/acss-2020-0019","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 2
Abstract
Abstract The authors consider the construction of a nonlinear multiple regression model, its confidence and prediction intervals to evaluate the efforts of mobile application development in the planning phase based on the multivariate normalizing transformation and outlier detection. The constructed model is compared to the linear regression model and nonlinear regression models based on the univariate transformations, such as the decimal logarithm, Box–Cox, and Johnson transformation. This model, in comparison with other regression models, has better prediction accuracy.