Estimating the Efforts of Mobile Application Development in the Planning Phase Using Nonlinear Regression Analysis

IF 0.5 Q4 COMPUTER SCIENCE, THEORY & METHODS Applied Computer Systems Pub Date : 2020-12-01 DOI:10.2478/acss-2020-0019
S. Prykhodko, N. Prykhodko, K. Knyrik
{"title":"Estimating the Efforts of Mobile Application Development in the Planning Phase Using Nonlinear Regression Analysis","authors":"S. Prykhodko, N. Prykhodko, K. Knyrik","doi":"10.2478/acss-2020-0019","DOIUrl":null,"url":null,"abstract":"Abstract The authors consider the construction of a nonlinear multiple regression model, its confidence and prediction intervals to evaluate the efforts of mobile application development in the planning phase based on the multivariate normalizing transformation and outlier detection. The constructed model is compared to the linear regression model and nonlinear regression models based on the univariate transformations, such as the decimal logarithm, Box–Cox, and Johnson transformation. This model, in comparison with other regression models, has better prediction accuracy.","PeriodicalId":41960,"journal":{"name":"Applied Computer Systems","volume":"572 1","pages":"172 - 179"},"PeriodicalIF":0.5000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Computer Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/acss-2020-0019","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 2

Abstract

Abstract The authors consider the construction of a nonlinear multiple regression model, its confidence and prediction intervals to evaluate the efforts of mobile application development in the planning phase based on the multivariate normalizing transformation and outlier detection. The constructed model is compared to the linear regression model and nonlinear regression models based on the univariate transformations, such as the decimal logarithm, Box–Cox, and Johnson transformation. This model, in comparison with other regression models, has better prediction accuracy.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用非线性回归分析估算移动应用程序开发在计划阶段的工作量
摘要基于多元归一化变换和离群值检测,考虑构建一个非线性多元回归模型、置信度和预测区间,以评估移动应用程序开发在规划阶段的努力程度。将构建的模型与基于十进制对数、Box-Cox和Johnson变换等单变量变换的线性回归模型和非线性回归模型进行比较。与其他回归模型相比,该模型具有更好的预测精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Applied Computer Systems
Applied Computer Systems COMPUTER SCIENCE, THEORY & METHODS-
自引率
10.00%
发文量
9
审稿时长
30 weeks
期刊最新文献
Multimodal Biometric System Based on the Fusion in Score of Fingerprint and Online Handwritten Signature Multichannel Approach for Sentiment Analysis Using Stack of Neural Network with Lexicon Based Padding and Attention Mechanism BRS-based Model for the Specification of Multi-view Point Ontology Empirical Analysis of Supervised and Unsupervised Machine Learning Algorithms with Aspect-Based Sentiment Analysis Approximate Nearest Neighbour-based Index Tree: A Case Study for Instrumental Music Search
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1