Utilizing a Transparency-Driven Environment Toward Trusted Automatic Genre Classification: A Case Study in Journalism History

A. Bilgin, L. Hollink, J. V. Ossenbruggen, E. T. K. Sang, Kim Smeenk, Frank Harbers, M. Broersma
{"title":"Utilizing a Transparency-Driven Environment Toward Trusted Automatic Genre Classification: A Case Study in Journalism History","authors":"A. Bilgin, L. Hollink, J. V. Ossenbruggen, E. T. K. Sang, Kim Smeenk, Frank Harbers, M. Broersma","doi":"10.1109/eScience.2018.00137","DOIUrl":null,"url":null,"abstract":"With the growing abundance of unlabeled data in real-world tasks, researchers have to rely on the predictions given by black-boxed computational models. However, it is an often neglected fact that these models may be scoring high on accuracy for the wrong reasons. In this paper, we present a practical impact analysis of enabling model transparency by various presentation forms. For this purpose, we developed an environment that empowers non-computer scientists to become practicing data scientists in their own research field. We demonstrate the gradually increasing understanding of journalism historians through a real-world use case study on automatic genre classification of newspaper articles. This study is a first step towards trusted usage of machine learning pipelines in a responsible way.","PeriodicalId":6476,"journal":{"name":"2018 IEEE 14th International Conference on e-Science (e-Science)","volume":"9 1","pages":"486-496"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 14th International Conference on e-Science (e-Science)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/eScience.2018.00137","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

With the growing abundance of unlabeled data in real-world tasks, researchers have to rely on the predictions given by black-boxed computational models. However, it is an often neglected fact that these models may be scoring high on accuracy for the wrong reasons. In this paper, we present a practical impact analysis of enabling model transparency by various presentation forms. For this purpose, we developed an environment that empowers non-computer scientists to become practicing data scientists in their own research field. We demonstrate the gradually increasing understanding of journalism historians through a real-world use case study on automatic genre classification of newspaper articles. This study is a first step towards trusted usage of machine learning pipelines in a responsible way.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用透明驱动的环境实现可信的自动体裁分类:新闻史案例研究
随着现实世界任务中未标记数据的日益增多,研究人员不得不依赖于黑箱计算模型给出的预测。然而,一个经常被忽视的事实是,这些模型可能因为错误的原因而在准确性上得分很高。在本文中,我们提出了通过各种表示形式实现模型透明度的实际影响分析。为此,我们开发了一个环境,使非计算机科学家能够在自己的研究领域成为实践数据科学家。我们通过对报纸文章自动体裁分类的真实案例研究,展示了新闻历史学家逐渐增加的理解。这项研究是以负责任的方式可靠地使用机器学习管道的第一步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Occam: Software Environment for Creating Reproducible Research Smart Data Scouting in Professional Soccer: Evaluating Passing Performance Based on Position Tracking Data Improving LBFGS Optimizer in PyTorch: Knowledge Transfer from Radio Interferometric Calibration to Machine Learning Nordic Exome Variant Catalogue a Web Resource for Genomic Data Browsing Survey on Research Software Engineering in the Netherlands
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1