Multiple Cycles of Time Series Anomaly Detection Algorithm Based on Wavelet Analysis

Danbo Chen, Xiaofeng Zhou
{"title":"Multiple Cycles of Time Series Anomaly Detection Algorithm Based on Wavelet Analysis","authors":"Danbo Chen, Xiaofeng Zhou","doi":"10.1109/IHMSC.2015.172","DOIUrl":null,"url":null,"abstract":"In view of the hydrological time series data with both trends, jumping, and the cycle characteristics of the certainty together with randomness of the unique features, this paper comes up with wavelet analysis to analyze the main cycle and hidden cycle, then through the sliding window method to predict data based on each period for further testing. And verify this method with instance data. The experimental results show that multiple cycles of time series anomaly detection algorithm based on wavelet analysis can effectively complete the anomaly detection of hydrological time series data.","PeriodicalId":6592,"journal":{"name":"2015 7th International Conference on Intelligent Human-Machine Systems and Cybernetics","volume":"27 1","pages":"424-427"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 7th International Conference on Intelligent Human-Machine Systems and Cybernetics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IHMSC.2015.172","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In view of the hydrological time series data with both trends, jumping, and the cycle characteristics of the certainty together with randomness of the unique features, this paper comes up with wavelet analysis to analyze the main cycle and hidden cycle, then through the sliding window method to predict data based on each period for further testing. And verify this method with instance data. The experimental results show that multiple cycles of time series anomaly detection algorithm based on wavelet analysis can effectively complete the anomaly detection of hydrological time series data.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于小波分析的多周期时间序列异常检测算法
针对水文时间序列数据兼具趋势、跳变、周期特征的确定性与随机性的独特特点,本文提出了小波分析对其主周期和隐含周期进行分析,然后通过滑动窗口法对基于各周期的数据进行预测,以便进一步检验。并用实例数据验证该方法。实验结果表明,基于小波分析的多周期时间序列异常检测算法可以有效地完成水文时间序列数据的异常检测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An Efficient Algorithm for Mining Maximal Frequent Patterns over Data Streams Analysis of Structural Parameters of Metal Multi-convolution Ring Effects of the Plasma Frequency and the Collision Frequency on the Performance of a Smart Plasma Antenna An Efficient Data Transmission Strategy for Cyber-Physical Systems in the Complicated Environment A Multi-objective Optimization Decision Model Assisting the Land-Use Spatial Districting under Hard Constraints
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1