The Movement Tracker: A Flexible System for Automated Movement Analysis in Invertebrate Model Organisms
L. Mouchiroud, Vincenzo Sorrentino, Evan G. Williams, M. Cornaglia, Michael V. Frochaux, Tao Lin, Amandine A Nicolet-dit-Félix, G. Krishnamani, Tarik Ouhmad, M. Gijs, B. Deplancke, J. Auwerx
求助PDF
{"title":"The Movement Tracker: A Flexible System for Automated Movement Analysis in Invertebrate Model Organisms","authors":"L. Mouchiroud, Vincenzo Sorrentino, Evan G. Williams, M. Cornaglia, Michael V. Frochaux, Tao Lin, Amandine A Nicolet-dit-Félix, G. Krishnamani, Tarik Ouhmad, M. Gijs, B. Deplancke, J. Auwerx","doi":"10.1002/cpns.17","DOIUrl":null,"url":null,"abstract":"Phenotyping strategies in simple model organisms such as D. melanogaster and C. elegans are often broadly limited to growth, aging, and fitness. Recently, a number of physical setups and video tracking software suites have been developed to allow for accurate, quantitative, and high‐throughput analysis of movement in flies and worms. However, many of these systems require precise experimental setups and/or fixed recording formats. We report here an update to the Parallel Worm Tracker software, which we termed the Movement Tracker. The Movement Tracker allows variable experimental setups to provide cross‐platform automated processing of a variety of movement characteristics in both worms and flies and permits the use of simple physical setups that can be readily implemented in any laboratory. This software allows high‐throughput processing capabilities and high levels of flexibility in video analysis, providing quantitative movement data on C. elegans and D. melanogaster in a variety of different conditions. © 2016 by John Wiley & Sons, Inc.","PeriodicalId":40016,"journal":{"name":"Current Protocols in Neuroscience","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Protocols in Neuroscience","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/cpns.17","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Neuroscience","Score":null,"Total":0}
引用次数: 15
引用
批量引用
运动跟踪器:用于无脊椎模式生物自动运动分析的灵活系统
简单模式生物(如黑腹线虫和秀丽隐杆线虫)的表型策略通常广泛局限于生长、衰老和健康。最近,许多物理装置和视频跟踪软件套件已经开发出来,可以对苍蝇和蠕虫的运动进行准确、定量和高通量的分析。然而,许多这样的系统需要精确的实验设置和/或固定的记录格式。我们在此报告并行蠕虫跟踪软件的更新,我们称之为运动跟踪器。运动跟踪器允许可变实验设置,以提供蠕虫和苍蝇的各种运动特性的跨平台自动化处理,并允许使用简单的物理设置,可以在任何实验室中轻松实现。该软件允许高通量处理能力和高水平的视频分析灵活性,提供秀丽隐杆线虫和黑胃线虫在各种不同条件下的定量运动数据。©2016 by John Wiley & Sons, Inc。
本文章由计算机程序翻译,如有差异,请以英文原文为准。