{"title":"Introduction to the Special Section on Computer Architectures and Parallel Algorithms","authors":"C. Dyer","doi":"10.1109/TPAMI.1989.10001","DOIUrl":null,"url":null,"abstract":"The topic of multiprocessor computer architectures and parallel algorithms for computer vision and related applications is not new, but researchers are now addressing both a wider scope of issues and emphasizing system integration. Recently, a wide variety of different systems have been designed, built, and tested on a range of image understanding tasks. An important goal beginning to be addressed is how to achieve high performance when a complete, integrated set of component vision processes are combined. The papers in this special section describe a number of approaches to improving the performance of vision architectures. Each paper uses a different model of parallel processing. The first four papers describe machines or chips which have been built, each exhibiting certain advantages for vision. One important distinction between these approaches is in terms of the number of processors used, defining the granularity of parallel processing. The first three papers also evaluate the performance of their systems on a suite of vision tasks covering several image representations and processing requirements.","PeriodicalId":13207,"journal":{"name":"IEEE Trans. Pattern Anal. Mach. Intell.","volume":"428 1","pages":"225-226"},"PeriodicalIF":0.0000,"publicationDate":"1989-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Trans. Pattern Anal. Mach. Intell.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TPAMI.1989.10001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
The topic of multiprocessor computer architectures and parallel algorithms for computer vision and related applications is not new, but researchers are now addressing both a wider scope of issues and emphasizing system integration. Recently, a wide variety of different systems have been designed, built, and tested on a range of image understanding tasks. An important goal beginning to be addressed is how to achieve high performance when a complete, integrated set of component vision processes are combined. The papers in this special section describe a number of approaches to improving the performance of vision architectures. Each paper uses a different model of parallel processing. The first four papers describe machines or chips which have been built, each exhibiting certain advantages for vision. One important distinction between these approaches is in terms of the number of processors used, defining the granularity of parallel processing. The first three papers also evaluate the performance of their systems on a suite of vision tasks covering several image representations and processing requirements.