Tsunami Wave Characteristics from the 1674 Ambon Earthquake Event Based on Landslide Scenarios

IF 2.2 4区 工程技术 Q3 ENGINEERING, GEOLOGICAL Environmental geotechnics Pub Date : 2023-07-24 DOI:10.3390/geotechnics3030038
K. Pakoksung, A. Suppasri, Fumihiko Imamura
{"title":"Tsunami Wave Characteristics from the 1674 Ambon Earthquake Event Based on Landslide Scenarios","authors":"K. Pakoksung, A. Suppasri, Fumihiko Imamura","doi":"10.3390/geotechnics3030038","DOIUrl":null,"url":null,"abstract":"This study focuses on understanding the historical tsunami events in Eastern Indonesia, specifically the Banda Sea region, by extracting information from the limited and challenging-to-interpret historical records. The oldest detailed account of a tsunami in Indonesia dates back to 1674, documented in the book Waerachtigh Verhael Van de Schlickelijcke Aerdbebinge by Rumphius. The study aims to comprehend the primary source of the tsunami and analyze its characteristics to facilitate future tsunami risk reduction. The methodology includes collecting topography and bathymetry data, conducting landslide scenario analysis, employing a two-layer wave propagation model, and performing spectral analysis. The study utilizes comprehensive datasets, investigates potential landslide scenarios, simulates tsunami propagation, and analyzes frequency characteristics using the fast Fourier transform. The 1674 event yielded a runup height of approximately 50–100 m, whereas this study underestimated the actual runup. To illustrate the tsunami wave along the bay’s coastline, a Hovmöller diagram was employed. By analyzing the Hovmöller diagram, the power spectral density was computed, revealing five prominent period bands: 6.96, 5.16, 4.1, 3.75, and 3.36 min. The integration of these components provides a rigorous approach to understanding tsunami dynamics and enhancing risk assessment and mitigation in the study area.","PeriodicalId":11823,"journal":{"name":"Environmental geotechnics","volume":"13 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2023-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental geotechnics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/geotechnics3030038","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 0

Abstract

This study focuses on understanding the historical tsunami events in Eastern Indonesia, specifically the Banda Sea region, by extracting information from the limited and challenging-to-interpret historical records. The oldest detailed account of a tsunami in Indonesia dates back to 1674, documented in the book Waerachtigh Verhael Van de Schlickelijcke Aerdbebinge by Rumphius. The study aims to comprehend the primary source of the tsunami and analyze its characteristics to facilitate future tsunami risk reduction. The methodology includes collecting topography and bathymetry data, conducting landslide scenario analysis, employing a two-layer wave propagation model, and performing spectral analysis. The study utilizes comprehensive datasets, investigates potential landslide scenarios, simulates tsunami propagation, and analyzes frequency characteristics using the fast Fourier transform. The 1674 event yielded a runup height of approximately 50–100 m, whereas this study underestimated the actual runup. To illustrate the tsunami wave along the bay’s coastline, a Hovmöller diagram was employed. By analyzing the Hovmöller diagram, the power spectral density was computed, revealing five prominent period bands: 6.96, 5.16, 4.1, 3.75, and 3.36 min. The integration of these components provides a rigorous approach to understanding tsunami dynamics and enhancing risk assessment and mitigation in the study area.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于滑坡情景的1674年安汶地震事件海啸波特征
本研究的重点是通过从有限且具有挑战性的历史记录中提取信息,了解印度尼西亚东部,特别是班达海地区的历史海啸事件。印尼海啸最古老的详细记录可以追溯到1674年,记录在Rumphius的《Waerachtigh Verhael Van de Schlickelijcke Aerdbebinge》一书中。本研究旨在了解海啸的主要来源,并分析其特征,以促进未来减少海啸风险。方法包括收集地形和测深数据,进行滑坡情景分析,采用两层波传播模型,并进行频谱分析。该研究利用综合数据集,调查潜在的滑坡情景,模拟海啸传播,并使用快速傅里叶变换分析频率特性。1674年的事件产生了大约50-100米的上升高度,而这项研究低估了实际的上升高度。为了说明沿海湾海岸线的海啸波,使用了Hovmöller图表。通过分析Hovmöller图,计算了功率谱密度,揭示了五个突出的周期带:6.96,5.16,4.1,3.75和3.36 min。这些组件的集成为了解海啸动力学和加强研究区域的风险评估和减灾提供了严格的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Environmental geotechnics
Environmental geotechnics Environmental Science-Water Science and Technology
CiteScore
6.20
自引率
18.20%
发文量
53
期刊介绍: In 21st century living, engineers and researchers need to deal with growing problems related to climate change, oil and water storage, handling, storage and disposal of toxic and hazardous wastes, remediation of contaminated sites, sustainable development and energy derived from the ground. Environmental Geotechnics aims to disseminate knowledge and provides a fresh perspective regarding the basic concepts, theory, techniques and field applicability of innovative testing and analysis methodologies and engineering practices in geoenvironmental engineering. The journal''s Editor in Chief is a Member of the Committee on Publication Ethics. All relevant papers are carefully considered, vetted by a distinguished team of international experts and rapidly published. Full research papers, short communications and comprehensive review articles are published under the following broad subject categories: geochemistry and geohydrology, soil and rock physics, biological processes in soil, soil-atmosphere interaction, electrical, electromagnetic and thermal characteristics of porous media, waste management, utilization of wastes, multiphase science, landslide wasting, soil and water conservation, sensor development and applications, the impact of climatic changes on geoenvironmental, geothermal/ground-source energy, carbon sequestration, oil and gas extraction techniques, uncertainty, reliability and risk, monitoring and forensic geotechnics.
期刊最新文献
Ecological flexible protection method of expansive soil slope under rainfall Briefing: Intensive inland aquaculture ponds: challenges and research opportunities 1D Damage constitutive model and small strain characteristics of fly ash–cementitious iron tailings powder under static and dynamic loading Experimental investigation on gas migration behaviour in unsaturated sand-clay mixture Dry shrinkage cracking and permeability of biopolymer-modified clay under dry-wet cycles
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1