Automated control and optimization of laser-driven ion acceleration

IF 5.2 1区 物理与天体物理 Q1 OPTICS High Power Laser Science and Engineering Pub Date : 2023-03-01 DOI:10.1017/hpl.2023.23
B. Loughran, M. Streeter, H. Ahmed, S. Astbury, M. Balcazar, M. Borghesi, N. Bourgeois, C. Curry, S. Dann, S. DiIorio, N. Dover, T. Dzelzanis, O. Ettlinger, M. Gauthier, L. Giuffrida, G. Glenn, S. Glenzer, J. Green, R. Gray, G. Hicks, C. Hyland, V. Istokskaia, M. King, D. Margarone, O. McCusker, P. McKenna, Z. Najmudin, C. Parisuaña, P. Parsons, C. Spindloe, D. Symes, A. Thomas, F. Treffert, N. Xu, C. Palmer
{"title":"Automated control and optimization of laser-driven ion acceleration","authors":"B. Loughran, M. Streeter, H. Ahmed, S. Astbury, M. Balcazar, M. Borghesi, N. Bourgeois, C. Curry, S. Dann, S. DiIorio, N. Dover, T. Dzelzanis, O. Ettlinger, M. Gauthier, L. Giuffrida, G. Glenn, S. Glenzer, J. Green, R. Gray, G. Hicks, C. Hyland, V. Istokskaia, M. King, D. Margarone, O. McCusker, P. McKenna, Z. Najmudin, C. Parisuaña, P. Parsons, C. Spindloe, D. Symes, A. Thomas, F. Treffert, N. Xu, C. Palmer","doi":"10.1017/hpl.2023.23","DOIUrl":null,"url":null,"abstract":"Abstract The interaction of relativistically intense lasers with opaque targets represents a highly non-linear, multi-dimensional parameter space. This limits the utility of sequential 1D scanning of experimental parameters for the optimization of secondary radiation, although to-date this has been the accepted methodology due to low data acquisition rates. High repetition-rate (HRR) lasers augmented by machine learning present a valuable opportunity for efficient source optimization. Here, an automated, HRR-compatible system produced high-fidelity parameter scans, revealing the influence of laser intensity on target pre-heating and proton generation. A closed-loop Bayesian optimization of maximum proton energy, through control of the laser wavefront and target position, produced proton beams with equivalent maximum energy to manually optimized laser pulses but using only 60% of the laser energy. This demonstration of automated optimization of laser-driven proton beams is a crucial step towards deeper physical insight and the construction of future radiation sources.","PeriodicalId":54285,"journal":{"name":"High Power Laser Science and Engineering","volume":"17 1","pages":""},"PeriodicalIF":5.2000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"High Power Laser Science and Engineering","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1017/hpl.2023.23","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 3

Abstract

Abstract The interaction of relativistically intense lasers with opaque targets represents a highly non-linear, multi-dimensional parameter space. This limits the utility of sequential 1D scanning of experimental parameters for the optimization of secondary radiation, although to-date this has been the accepted methodology due to low data acquisition rates. High repetition-rate (HRR) lasers augmented by machine learning present a valuable opportunity for efficient source optimization. Here, an automated, HRR-compatible system produced high-fidelity parameter scans, revealing the influence of laser intensity on target pre-heating and proton generation. A closed-loop Bayesian optimization of maximum proton energy, through control of the laser wavefront and target position, produced proton beams with equivalent maximum energy to manually optimized laser pulses but using only 60% of the laser energy. This demonstration of automated optimization of laser-driven proton beams is a crucial step towards deeper physical insight and the construction of future radiation sources.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
激光驱动离子加速的自动控制与优化
相对强激光与不透明目标的相互作用是一个高度非线性的多维参数空间。这限制了对二次辐射优化的实验参数进行顺序一维扫描的效用,尽管迄今为止,由于数据采集率低,这已成为公认的方法。通过机器学习增强的高重复率(HRR)激光器为有效的光源优化提供了宝贵的机会。在这里,一个自动化的、hrr兼容的系统产生了高保真的参数扫描,揭示了激光强度对目标预热和质子产生的影响。通过控制激光波前和目标位置,对最大质子能量进行闭环贝叶斯优化,产生的质子束与手动优化的激光脉冲的最大能量相当,但仅使用60%的激光能量。激光驱动质子束的自动优化演示是迈向更深入的物理洞察和未来辐射源构建的关键一步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
High Power Laser Science and Engineering
High Power Laser Science and Engineering Physics and Astronomy-Nuclear and High Energy Physics
CiteScore
7.10
自引率
4.20%
发文量
401
审稿时长
21 weeks
期刊介绍: High Power Laser Science and Engineering (HPLaser) is an international, peer-reviewed open access journal which focuses on all aspects of high power laser science and engineering. HPLaser publishes research that seeks to uncover the underlying science and engineering in the fields of high energy density physics, high power lasers, advanced laser technology and applications and laser components. Topics covered include laser-plasma interaction, ultra-intense ultra-short pulse laser interaction with matter, attosecond physics, laser design, modelling and optimization, laser amplifiers, nonlinear optics, laser engineering, optical materials, optical devices, fiber lasers, diode-pumped solid state lasers and excimer lasers.
期刊最新文献
Efficient dual-stage all-solid-state post-compression for 100 W level ultrafast lasers Compression and acceleration processes of spherical shells in gold cones Design and optimization methods towards a 10 kW high beam quality fiber laser based on the counter tandem pumping scheme Precise mode control of mid-infrared high-power laser diodes using on-chip advanced sawtooth waveguide designs New grating compressor designs for XCELS and SEL-100 PW projects
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1