{"title":"Optical and magnetic properties of orthoferrite NdFeO3 nanomaterials synthesized by simple co-precipitation method","authors":"P. Duyen, A. T. Nguyen","doi":"10.17308/kcmf.2021.23/3680","DOIUrl":null,"url":null,"abstract":"In this work, orthoferrite NdFeO3 nanomaterials with particle sizes 20-40 nm have been successfully synthesized via a simple co-precipitation method through the hydrolysis of Nd (III) and Fe (III) cations in hot water with 5% NaOH as a precipitating agent. Single-phase NdFeO3 was generated after calcination of the as-prepared powder at 700, 800, and 900 °C for 1 hour. The UV-Vis spectra at room temperature presented strong absorption in the UV-Vis regions (l = 200–400 nm and 400–600 nm) with small band gap energy (Eg = 2.2÷2.5 eV). The obtained NdFeO3 nanomaterials exhibited a hard ferromagnetic behavior with high coercivity (Hc = 600–1600 Oe).","PeriodicalId":17879,"journal":{"name":"Kondensirovannye sredy i mezhfaznye granitsy = Condensed Matter and Interphases","volume":"98 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Kondensirovannye sredy i mezhfaznye granitsy = Condensed Matter and Interphases","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17308/kcmf.2021.23/3680","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
In this work, orthoferrite NdFeO3 nanomaterials with particle sizes 20-40 nm have been successfully synthesized via a simple co-precipitation method through the hydrolysis of Nd (III) and Fe (III) cations in hot water with 5% NaOH as a precipitating agent. Single-phase NdFeO3 was generated after calcination of the as-prepared powder at 700, 800, and 900 °C for 1 hour. The UV-Vis spectra at room temperature presented strong absorption in the UV-Vis regions (l = 200–400 nm and 400–600 nm) with small band gap energy (Eg = 2.2÷2.5 eV). The obtained NdFeO3 nanomaterials exhibited a hard ferromagnetic behavior with high coercivity (Hc = 600–1600 Oe).