G. Nadzinski, B. Gerazov, Stefan Zlatinov, Tomislav Kartalov, Marija Markovska Dimitrovska, H. Gjoreski, Risto Chavdarov, Z. Kokolanski, Igor Atanasov, Jelena Horstmann, Uros Sterle, M. Gams
{"title":"Data Science and Machine Learning Teaching Practices with Focus on Vocational Education and Training","authors":"G. Nadzinski, B. Gerazov, Stefan Zlatinov, Tomislav Kartalov, Marija Markovska Dimitrovska, H. Gjoreski, Risto Chavdarov, Z. Kokolanski, Igor Atanasov, Jelena Horstmann, Uros Sterle, M. Gams","doi":"10.15388/infedu.2023.28","DOIUrl":null,"url":null,"abstract":"With the development of technology allowing for a rapid expansion of data science and machine learning in our everyday lives, a significant gap is forming in the global job market where the demand for qualified workers in these fields cannot be properly satisfied. This worrying trend calls for an immediate action in education, where these skills must be taught to students at all levels in an efficient and up-to-date manner. This paper gives an overview of the current state of data science and machine learning education globally and both at the high school and university levels, while outlining some illustrative and positive examples. Special focus is given to vocational education and training (VET), where the teaching of these skills is at its very beginning. Also presented and analysed are survey results concerning VET students in Slovenia, Serbia, and North Macedonia, and their knowledge, interests, and prerequisites regarding data science and machine learning. These results confirm the need for development of efficient and accessible curricula and courses on these subjects in vocational schools.","PeriodicalId":45270,"journal":{"name":"Informatics in Education","volume":"10 3 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2023-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Informatics in Education","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15388/infedu.2023.28","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"EDUCATION & EDUCATIONAL RESEARCH","Score":null,"Total":0}
引用次数: 0
Abstract
With the development of technology allowing for a rapid expansion of data science and machine learning in our everyday lives, a significant gap is forming in the global job market where the demand for qualified workers in these fields cannot be properly satisfied. This worrying trend calls for an immediate action in education, where these skills must be taught to students at all levels in an efficient and up-to-date manner. This paper gives an overview of the current state of data science and machine learning education globally and both at the high school and university levels, while outlining some illustrative and positive examples. Special focus is given to vocational education and training (VET), where the teaching of these skills is at its very beginning. Also presented and analysed are survey results concerning VET students in Slovenia, Serbia, and North Macedonia, and their knowledge, interests, and prerequisites regarding data science and machine learning. These results confirm the need for development of efficient and accessible curricula and courses on these subjects in vocational schools.
期刊介绍:
INFORMATICS IN EDUCATION publishes original articles about theoretical, experimental and methodological studies in the fields of informatics (computer science) education and educational applications of information technology, ranging from primary to tertiary education. Multidisciplinary research studies that enhance our understanding of how theoretical and technological innovations translate into educational practice are most welcome. We are particularly interested in work at boundaries, both the boundaries of informatics and of education. The topics covered by INFORMATICS IN EDUCATION will range across diverse aspects of informatics (computer science) education research including: empirical studies, including composing different approaches to teach various subjects, studying availability of various concepts at a given age, measuring knowledge transfer and skills developed, addressing gender issues, etc. statistical research on big data related to informatics (computer science) activities including e.g. research on assessment, online teaching, competitions, etc. educational engineering focusing mainly on developing high quality original teaching sequences of different informatics (computer science) topics that offer new, successful ways for knowledge transfer and development of computational thinking machine learning of student''s behavior including the use of information technology to observe students in the learning process and discovering clusters of their working design and evaluation of educational tools that apply information technology in novel ways.