Statistical Comparisons of the Top 10 Algorithms in Data Mining for Classification Task

IF 3.4 3区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE International Journal of Interactive Multimedia and Artificial Intelligence Pub Date : 2016-09-01 DOI:10.9781/IJIMAI.2016.4110
N. Settouti, M. Bechar, M. A. Chikh
{"title":"Statistical Comparisons of the Top 10 Algorithms in Data Mining for Classification Task","authors":"N. Settouti, M. Bechar, M. A. Chikh","doi":"10.9781/IJIMAI.2016.4110","DOIUrl":null,"url":null,"abstract":"This work is builds on the study of the 10 top data mining algorithms identified by the IEEE International Conference on Data Mining (ICDM) community in December 2006. We address the same study, but with the application of statistical tests to establish, a more appropriate and justified ranking classifier for classification tasks. Current studies and practices on theoretical and empirical comparison of several methods, approaches, advocated tests that are more appropriate. Thereby, recent studies recommend a set of simple and robust non-parametric tests for statistical comparisons classifiers. In this paper, we propose to perform non-parametric statistical tests by the Friedman test with post-hoc tests corresponding to the comparison of several classifiers on multiple data sets. The tests provide a better judge for the relevance of these algorithms.","PeriodicalId":48602,"journal":{"name":"International Journal of Interactive Multimedia and Artificial Intelligence","volume":"1 1","pages":"46-51"},"PeriodicalIF":3.4000,"publicationDate":"2016-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"67","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Interactive Multimedia and Artificial Intelligence","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.9781/IJIMAI.2016.4110","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 67

Abstract

This work is builds on the study of the 10 top data mining algorithms identified by the IEEE International Conference on Data Mining (ICDM) community in December 2006. We address the same study, but with the application of statistical tests to establish, a more appropriate and justified ranking classifier for classification tasks. Current studies and practices on theoretical and empirical comparison of several methods, approaches, advocated tests that are more appropriate. Thereby, recent studies recommend a set of simple and robust non-parametric tests for statistical comparisons classifiers. In this paper, we propose to perform non-parametric statistical tests by the Friedman test with post-hoc tests corresponding to the comparison of several classifiers on multiple data sets. The tests provide a better judge for the relevance of these algorithms.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
分类任务数据挖掘十大算法的统计比较
这项工作是建立在对2006年12月IEEE国际数据挖掘会议(ICDM)社区确定的10个顶级数据挖掘算法的研究之上的。我们解决了同样的研究,但与统计测试的应用,以建立一个更合适和合理的分类器的分类任务。目前的研究和实践对几种理论方法和实证方法进行了比较,主张采用比较合适的检验方法。因此,最近的研究推荐了一套简单而稳健的非参数测试统计比较分类器。在本文中,我们建议通过Friedman检验进行非参数统计检验,并采用对应于多个数据集上几个分类器比较的事后检验。这些测试为这些算法的相关性提供了更好的判断。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
7.20
自引率
11.10%
发文量
47
审稿时长
10 weeks
期刊最新文献
Consensus-Based Learning for MAS: Definition, Implementation and Integration in IVEs Development of an Intelligent Classifier Model for Denial of Service Attack Detection Pollutant Time Series Analysis for Improving Air-Quality in Smart Cities Using Large Language Models to Shape Social Robots’ Speech Problem Detection in the Edge of IoT Applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1