A Comprehensive Analysis of Water Alternating Gas Recovery Mechanisms in a Giant Middle East Field

Pierre-Edouard Schreiber, Andrea Osorio Ochoa, Jean-Claude Hild, C. Prinet, M. Bourgeois, Amit Kumar
{"title":"A Comprehensive Analysis of Water Alternating Gas Recovery Mechanisms in a Giant Middle East Field","authors":"Pierre-Edouard Schreiber, Andrea Osorio Ochoa, Jean-Claude Hild, C. Prinet, M. Bourgeois, Amit Kumar","doi":"10.2118/200067-ms","DOIUrl":null,"url":null,"abstract":"\n This paper is based on a study performed on an offshore Middle East field. The field is a giant complex mostly carbonate oil field, which is characterized by a thin oil column, a low permeability associated with fractures, a large transition zone and a lateral variation in fluid properties. Even after an extensive and efficient water-flood development, there are substantial amounts of oil remaining in the reservoir due to the highly oil-wet nature of the rock. Various Enhanced Oil Recovery (EOR) techniques have been envisaged to enhance oil production. The most mature one is the immiscible hydrocarbon Water Alternating Gas (WAG) injection. This High Pressure (HP)-WAG project started in September 2012 after the encouraging results of the continuous Low Pressure (LP) gas injection trial performed in 2008.\n This paper presents the latest analysis of the performances of this HP-WAG project. The HP-WAG project performances is evaluated through (i) the oil gain (versus a water-flood baseline), (ii) the water injectivity evolution over the WAG cycles, (iii) the gas management and (iv) the well and surface integrity. The paper also aims to share the methodology for analyzing the contribution of the main mechanisms occurring over the WAG cycles: the oil-gas interaction mechanisms and the desaturation mechanisms. The oil-gas interactions that occur in immiscible gas injection cases lead to significant long-lasting WAG effects thanks to both the swelling effects that continue even once the oil is saturated and a permanent mobility ratio improvement. The contribution of both macroscopic and microscopic oil desaturation is also described and quantified in this paper.\n The work presented in this paper has evidenced the HP-WAG technique benefits and has improved the understanding of the impacts of the main mechanism occurring in the reservoir. This knowledge paved the way towards more extensive WAG deployment on the field. It also emphasized the need of laboratory experiments to calibrate the three-phase models and the absolute need of compositional models to capture the entire WAG benefits even in immiscible gas injection cases.","PeriodicalId":11113,"journal":{"name":"Day 1 Mon, March 21, 2022","volume":"115 2 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 1 Mon, March 21, 2022","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2118/200067-ms","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper is based on a study performed on an offshore Middle East field. The field is a giant complex mostly carbonate oil field, which is characterized by a thin oil column, a low permeability associated with fractures, a large transition zone and a lateral variation in fluid properties. Even after an extensive and efficient water-flood development, there are substantial amounts of oil remaining in the reservoir due to the highly oil-wet nature of the rock. Various Enhanced Oil Recovery (EOR) techniques have been envisaged to enhance oil production. The most mature one is the immiscible hydrocarbon Water Alternating Gas (WAG) injection. This High Pressure (HP)-WAG project started in September 2012 after the encouraging results of the continuous Low Pressure (LP) gas injection trial performed in 2008. This paper presents the latest analysis of the performances of this HP-WAG project. The HP-WAG project performances is evaluated through (i) the oil gain (versus a water-flood baseline), (ii) the water injectivity evolution over the WAG cycles, (iii) the gas management and (iv) the well and surface integrity. The paper also aims to share the methodology for analyzing the contribution of the main mechanisms occurring over the WAG cycles: the oil-gas interaction mechanisms and the desaturation mechanisms. The oil-gas interactions that occur in immiscible gas injection cases lead to significant long-lasting WAG effects thanks to both the swelling effects that continue even once the oil is saturated and a permanent mobility ratio improvement. The contribution of both macroscopic and microscopic oil desaturation is also described and quantified in this paper. The work presented in this paper has evidenced the HP-WAG technique benefits and has improved the understanding of the impacts of the main mechanism occurring in the reservoir. This knowledge paved the way towards more extensive WAG deployment on the field. It also emphasized the need of laboratory experiments to calibrate the three-phase models and the absolute need of compositional models to capture the entire WAG benefits even in immiscible gas injection cases.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
中东某大型油田水交替采气机理综合分析
本文基于在中东海上油田进行的一项研究。该油田是一个以碳酸盐岩为主的大型复杂油田,具有油柱薄、渗透率低、裂缝伴生、过渡带大、流体物性横向变化等特点。即使经过大规模高效的注水开发,由于岩石的高度油湿性,储层中仍有大量的油残留。人们设想了各种提高石油采收率(EOR)技术来提高石油产量。其中最成熟的是非混相油气水交替注气。在2008年进行的连续低压注气试验取得令人鼓舞的结果后,该高压(HP)-WAG项目于2012年9月启动。本文介绍了HP-WAG项目的最新性能分析。HP-WAG项目的性能通过以下几个方面进行评估:(i)原油产量(相对于水驱基线),(ii) WAG循环期间的注水能力演变,(iii)气体管理,(iv)井和地面完整性。本文还旨在分享分析WAG旋回中发生的主要机制的贡献的方法:油气相互作用机制和去饱和机制。在非混相气体注入情况下,油气相互作用会导致显著的长效WAG效应,这是因为即使油达到饱和,膨胀效应也会持续存在,而且流动比会永久提高。文中还对宏观和微观油脱饱和度的贡献进行了描述和量化。本文的工作证明了HP-WAG技术的优势,并提高了对储层发生的主要机制影响的理解。这些知识为WAG在现场的更广泛部署铺平了道路。它还强调了实验室实验校准三相模型的必要性,以及即使在非混相气体注入情况下,也绝对需要成分模型来捕捉整个WAG的好处。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Mukhaizna Steam Flood Project: Thermal Surveillance Practices and Log Response Brine to Enhance the Transport of Encapsulated Petroleum Sulfonates Nanosurfactants Deeper into the High Temperature Carbonate Reservoirs A Self-Adaptive Artificial Neural Network Technique to Estimate Static Young's Modulus Based on Well Logs Diverse Asphaltene Challenges in a Mature Field: A Fluid Study from Iraq Artificial-Intelligence Based Horizontal Well Placement Optimization Leveraging Geological and Engineering Attributes, and Expert-Based Workflows
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1