R. Jalilianhasanpour, E. Beheshtian, Ghazi Sherbaf, S. Sahraian, H. Sair
{"title":"Functional Connectivity in Neurodegenerative Disorders: Alzheimer's Disease and Frontotemporal Dementia.","authors":"R. Jalilianhasanpour, E. Beheshtian, Ghazi Sherbaf, S. Sahraian, H. Sair","doi":"10.1097/RMR.0000000000000223","DOIUrl":null,"url":null,"abstract":"Neurodegenerative disorders are a growing cause of morbidity and mortality worldwide. Onset is typically insidious and clinical symptoms of behavioral change, memory loss, or cognitive dysfunction may not be evident early in the disease process. Efforts have been made to discover biomarkers that allow for earlier diagnosis of neurodegenerative disorders, to initiate treatment that may slow the course of clinical deterioration. Neuronal dysfunction occurs earlier than clinical symptoms manifest. Thus, assessment of neuronal function using functional brain imaging has been examined as a potential biomarker. While most early studies used task-functional magnetic resonance imaging (fMRI), with the more recent technique of resting-state fMRI, \"intrinsic\" relationships between brain regions or brain networks have been studied in greater detail in neurodegenerative disorders. In Alzheimer's disease, the most common neurodegenerative disorder, and frontotemporal dementia, another of the common dementias, specific brain networks may be particularly susceptible to dysfunction. In this review, we highlight the major findings of functional connectivity assessed by resting state fMRI in Alzheimer's disease and frontotemporal dementia.","PeriodicalId":39381,"journal":{"name":"Topics in Magnetic Resonance Imaging","volume":"31 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Topics in Magnetic Resonance Imaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1097/RMR.0000000000000223","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 23
Abstract
Neurodegenerative disorders are a growing cause of morbidity and mortality worldwide. Onset is typically insidious and clinical symptoms of behavioral change, memory loss, or cognitive dysfunction may not be evident early in the disease process. Efforts have been made to discover biomarkers that allow for earlier diagnosis of neurodegenerative disorders, to initiate treatment that may slow the course of clinical deterioration. Neuronal dysfunction occurs earlier than clinical symptoms manifest. Thus, assessment of neuronal function using functional brain imaging has been examined as a potential biomarker. While most early studies used task-functional magnetic resonance imaging (fMRI), with the more recent technique of resting-state fMRI, "intrinsic" relationships between brain regions or brain networks have been studied in greater detail in neurodegenerative disorders. In Alzheimer's disease, the most common neurodegenerative disorder, and frontotemporal dementia, another of the common dementias, specific brain networks may be particularly susceptible to dysfunction. In this review, we highlight the major findings of functional connectivity assessed by resting state fMRI in Alzheimer's disease and frontotemporal dementia.
期刊介绍:
Topics in Magnetic Resonance Imaging is a leading information resource for professionals in the MRI community. This publication supplies authoritative, up-to-the-minute coverage of technical advances in this evolving field as well as practical, hands-on guidance from leading experts. Six times a year, TMRI focuses on a single timely topic of interest to radiologists. These topical issues present a variety of perspectives from top radiological authorities to provide an in-depth understanding of how MRI is being used in each area.