Keyword annotation of biomedicai documents with graph-based similarity methods

Shuguang Wang, M. Hauskrecht
{"title":"Keyword annotation of biomedicai documents with graph-based similarity methods","authors":"Shuguang Wang, M. Hauskrecht","doi":"10.1109/BIBM.2012.6392698","DOIUrl":null,"url":null,"abstract":"In this paper, we present a new approach that lets us extract, and represent relations among terms (concepts) in the documents and uses these relations to support various document analysis applications. Our approach works by building a graph of local co-occurrence relations among terms that are extracted directly from text and by defining a global similarity metric among these terms and sets of terms using the graph and its connectivity. We demonstrate the benefit of the approach on the problem of MeSH keyword annotation of documents based on their abstracts.","PeriodicalId":6392,"journal":{"name":"2012 IEEE International Conference on Bioinformatics and Biomedicine Workshops","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2012-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE International Conference on Bioinformatics and Biomedicine Workshops","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIBM.2012.6392698","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

In this paper, we present a new approach that lets us extract, and represent relations among terms (concepts) in the documents and uses these relations to support various document analysis applications. Our approach works by building a graph of local co-occurrence relations among terms that are extracted directly from text and by defining a global similarity metric among these terms and sets of terms using the graph and its connectivity. We demonstrate the benefit of the approach on the problem of MeSH keyword annotation of documents based on their abstracts.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于图的相似度方法的生物医学文献关键词标注
在本文中,我们提出了一种新的方法,它允许我们提取和表示文档中术语(概念)之间的关系,并使用这些关系来支持各种文档分析应用程序。我们的方法通过构建直接从文本中提取的术语之间的局部共现关系图,并使用图及其连接性在这些术语和术语集之间定义全局相似性度量来工作。我们演示了该方法在基于摘要的文档网格关键字标注问题上的优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Towards comprehensive longitudinal healthcare data capture On the repetitive collection indexing problem Sampling low-energy protein-protein configurations with basin hopping The effect of measurement approach and noise level on gene selection stability Clinical research progress of treatment over Tourette syndrome with acup-mox therapy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1