Effect of 6-Aminohexanoic Acid Released from Its Aluminum Tri-Polyphosphate Intercalate (ATP-6-AHA) on the Corrosion Protection Mechanism of Steel in 3.5% Sodium Chloride Solution

C. Hejjaj, A. A. Aghzzaf, N. Scharnagl, M. Makha, M. Dahbi, M. Zheludkevich, R. Hakkou, C. Fischer
{"title":"Effect of 6-Aminohexanoic Acid Released from Its Aluminum Tri-Polyphosphate Intercalate (ATP-6-AHA) on the Corrosion Protection Mechanism of Steel in 3.5% Sodium Chloride Solution","authors":"C. Hejjaj, A. A. Aghzzaf, N. Scharnagl, M. Makha, M. Dahbi, M. Zheludkevich, R. Hakkou, C. Fischer","doi":"10.3390/cmd2040036","DOIUrl":null,"url":null,"abstract":"A new corrosion inhibitor called ATP-6-AHA was elaborated, and its inhibition action on S235 low carbon steel in 3.5% sodium chloride (NaCl) was investigated using gravimetry, potentiodynamic polarization (PP), and electrochemical impedance spectroscopy (EIS). The release of ecofriendly 6-aminohexanoic acid (6-AHA) from its established aluminum tri-polyphosphate intercalate (ATP-6-AHA) is investigated using electrochemical and surface characterization techniques such as X-ray diffraction (XRD) and X-ray fluorescence (XRF). The results revealed that ATP-6-AHA is a good inhibitor, with an inhibition efficiency of approximately 70%. The efficiency is related to the passivation of a steel surface by a phosphate protective layer due to the synergistic effect of 6-AHA, as confirmed by a steel surface analysis conducted using X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM). This study suggests that the intercalation of 6-AHA as a sustainable organic molecule within the interlayer spaces of aluminum tri-polyphosphate can well serve as a good flaky inhibitor for protecting S235 low-carbon steel from corrosion in 3.5% NaCl.","PeriodicalId":10693,"journal":{"name":"Corrosion and Materials Degradation","volume":"8 5 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Corrosion and Materials Degradation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/cmd2040036","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

A new corrosion inhibitor called ATP-6-AHA was elaborated, and its inhibition action on S235 low carbon steel in 3.5% sodium chloride (NaCl) was investigated using gravimetry, potentiodynamic polarization (PP), and electrochemical impedance spectroscopy (EIS). The release of ecofriendly 6-aminohexanoic acid (6-AHA) from its established aluminum tri-polyphosphate intercalate (ATP-6-AHA) is investigated using electrochemical and surface characterization techniques such as X-ray diffraction (XRD) and X-ray fluorescence (XRF). The results revealed that ATP-6-AHA is a good inhibitor, with an inhibition efficiency of approximately 70%. The efficiency is related to the passivation of a steel surface by a phosphate protective layer due to the synergistic effect of 6-AHA, as confirmed by a steel surface analysis conducted using X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM). This study suggests that the intercalation of 6-AHA as a sustainable organic molecule within the interlayer spaces of aluminum tri-polyphosphate can well serve as a good flaky inhibitor for protecting S235 low-carbon steel from corrosion in 3.5% NaCl.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
ATP-6-AHA在3.5%氯化钠溶液中释放6-氨基己酸对钢的防腐机理的影响
研制了一种新型缓蚀剂ATP-6-AHA,并采用重量法、动电位极化法(PP)和电化学阻抗谱法(EIS)研究了其在3.5%氯化钠(NaCl)中对S235低碳钢的缓蚀作用。利用电化学和x射线衍射(XRD)、x射线荧光(XRF)等表面表征技术,研究了环境友好型6-氨基己酸(6-AHA)从三聚磷酸铝插层物(ATP-6-AHA)中释放的过程。结果表明,ATP-6-AHA是一种良好的抑制剂,其抑制效率约为70%。利用x射线光电子能谱(XPS)和扫描电子显微镜(SEM)进行的钢表面分析证实,由于6-AHA的协同作用,该效率与磷酸盐保护层对钢表面的钝化有关。研究表明,6-AHA作为可持续有机分子嵌入三聚磷酸铝的层间空间,可以作为良好的片状缓蚀剂,在3.5% NaCl中保护S235低碳钢免受腐蚀。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
4.50
自引率
0.00%
发文量
0
期刊最新文献
Influence of Isothermal Annealing in the 600 to 750 °C Range on the Degradation of SAF 2205 Duplex Stainless Steel Unraveling the Corrosion of the Ti–6Al–4V Orthopedic Alloy in Phosphate-Buffered Saline (PBS) Solution: Influence of Frequency and Potential Impact of the Delay Period between Electrochemical Hydrogen Charging and Tensile Testing on the Mechanical Properties of Mild Steel Mechanistic Analysis of Hydrogen Evolution Reaction on Stationary Polycrystalline Gold Electrodes in H2SO4 Solutions In-Situ AFM Studies of Surfactant Adsorption on Stainless Steel Surfaces during Electrochemical Polarization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1