Person re-identification via adaboost ranking ensemble

Zhaoju Li, Zhenjun Han, Qixiang Ye
{"title":"Person re-identification via adaboost ranking ensemble","authors":"Zhaoju Li, Zhenjun Han, Qixiang Ye","doi":"10.1109/ICIP.2016.7533165","DOIUrl":null,"url":null,"abstract":"Matching specific persons across scenes, known as person re-identification, is an important yet unsolved computer vision problem. Feature representation and metric learning are two fundamental factors in person re-identification. However, current person re-identification methods, which use single handcrafted feature with corresponding metric, could be not powerful enough when facing illumination, viewpoint and pose variations. Thus it inevitably produces suboptimal ranking lists. In this paper, we propose incorporating multiple features with metrics to build weak learners, and aggregate the base ranking lists by AdaBoost Ranking. Experiments on two commonly used datasets, VIPeR and CUHK01, show that our proposed approach greatly improves recognition rates over the state-of-the-art methods.","PeriodicalId":6521,"journal":{"name":"2016 IEEE International Conference on Image Processing (ICIP)","volume":"21 6 1","pages":"4269-4273"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Conference on Image Processing (ICIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP.2016.7533165","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Matching specific persons across scenes, known as person re-identification, is an important yet unsolved computer vision problem. Feature representation and metric learning are two fundamental factors in person re-identification. However, current person re-identification methods, which use single handcrafted feature with corresponding metric, could be not powerful enough when facing illumination, viewpoint and pose variations. Thus it inevitably produces suboptimal ranking lists. In this paper, we propose incorporating multiple features with metrics to build weak learners, and aggregate the base ranking lists by AdaBoost Ranking. Experiments on two commonly used datasets, VIPeR and CUHK01, show that our proposed approach greatly improves recognition rates over the state-of-the-art methods.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过adaboost排名集合重新识别人员
在场景中匹配特定的人,即人的再识别,是一个重要但尚未解决的计算机视觉问题。特征表征和度量学习是人再识别的两个基本因素。然而,现有的人脸再识别方法在面对光照、视点和姿态变化时,使用单个手工特征和相应的度量,可能不够强大。因此,它不可避免地产生次优排名列表。在本文中,我们提出将多个特征与度量相结合来构建弱学习器,并通过AdaBoost排名来汇总基本排名列表。在两个常用的数据集(VIPeR和CUHK01)上进行的实验表明,我们提出的方法比最先进的方法大大提高了识别率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Content-adaptive pyramid representation for 3D object classification Automating the measurement of physiological parameters: A case study in the image analysis of cilia motion Horizon based orientation estimation for planetary surface navigation Softcast with per-carrier power-constrained channels Speeding-up a convolutional neural network by connecting an SVM network
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1