Cascaded Point Network for 3D Hand Pose Estimation*

Yikun Dou, Xuguang Wang, Yuying Zhu, Xiaoming Deng, Cuixia Ma, Liang Chang, Hongan Wang
{"title":"Cascaded Point Network for 3D Hand Pose Estimation*","authors":"Yikun Dou, Xuguang Wang, Yuying Zhu, Xiaoming Deng, Cuixia Ma, Liang Chang, Hongan Wang","doi":"10.1109/ICASSP.2019.8683356","DOIUrl":null,"url":null,"abstract":"Recent PointNet-family hand pose methods have the advantages of high pose estimation performance and small model size, and it is a key problem to get effective sample points for PointNet-family methods. In this paper, we propose a two-stage coarse to fine hand pose estimation method, which belongs to PointNet-family methods and explores a new sample point strategy. In the first stage, we use 3D coordinate and surface normal of normalized point cloud as input to regress coarse hand joints. In the second stage, we use the hand joints in the first stage as the initial sample points to refine the hand joints. Experiments on widely used datasets demonstrate that using joints as sample points is more effective and our method achieves top-rank performance.","PeriodicalId":13203,"journal":{"name":"ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":"33 1","pages":"1982-1986"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.2019.8683356","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Recent PointNet-family hand pose methods have the advantages of high pose estimation performance and small model size, and it is a key problem to get effective sample points for PointNet-family methods. In this paper, we propose a two-stage coarse to fine hand pose estimation method, which belongs to PointNet-family methods and explores a new sample point strategy. In the first stage, we use 3D coordinate and surface normal of normalized point cloud as input to regress coarse hand joints. In the second stage, we use the hand joints in the first stage as the initial sample points to refine the hand joints. Experiments on widely used datasets demonstrate that using joints as sample points is more effective and our method achieves top-rank performance.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
级联点网络的3D手姿态估计*
最近的pointnet家族手位姿方法具有姿态估计性能高、模型尺寸小的优点,如何获得有效的样本点是pointnet家族方法的关键问题。本文提出了一种由粗到精的两阶段手部姿态估计方法,该方法属于pointnet家族方法,并探索了一种新的样本点策略。在第一阶段,我们使用归一化点云的三维坐标和表面法线作为输入对粗糙的手关节进行回归。在第二阶段,我们使用第一阶段的手部关节作为初始样本点来细化手部关节。在广泛使用的数据集上的实验表明,使用关节作为样本点更有效,我们的方法达到了一流的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Universal Acoustic Modeling Using Neural Mixture Models Speech Landmark Bigrams for Depression Detection from Naturalistic Smartphone Speech Robust M-estimation Based Matrix Completion When Can a System of Subnetworks Be Registered Uniquely? Learning Search Path for Region-level Image Matching
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1