Afonso M. Teodoro, J. Bioucas-Dias, Mário A. T. Figueiredo
{"title":"Scene-Adapted plug-and-play algorithm with convergence guarantees","authors":"Afonso M. Teodoro, J. Bioucas-Dias, Mário A. T. Figueiredo","doi":"10.1109/MLSP.2017.8168194","DOIUrl":null,"url":null,"abstract":"Recent frameworks, such as the so-called plug-and-play, allow us to leverage the developments in image denoising to tackle other, and more involved, problems in image processing. As the name suggests, state-of-the-art denoisers are plugged into an iterative algorithm that alternates between a denoising step and the inversion of the observation operator. While these tools offer flexibility, the convergence of the resulting algorithm may be difficult to analyse. In this paper, we plug a state-of-the-art denoiser, based on a Gaussian mixture model, in the iterations of an alternating direction method of multipliers and prove the algorithm is guaranteed to converge. Moreover, we build upon the concept of scene-adapted priors where we learn a model targeted to a specific scene being imaged, and apply the proposed method to address the hyperspectral sharpening problem.","PeriodicalId":6542,"journal":{"name":"2017 IEEE 27th International Workshop on Machine Learning for Signal Processing (MLSP)","volume":"19 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2017-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"29","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 27th International Workshop on Machine Learning for Signal Processing (MLSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MLSP.2017.8168194","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 29
Abstract
Recent frameworks, such as the so-called plug-and-play, allow us to leverage the developments in image denoising to tackle other, and more involved, problems in image processing. As the name suggests, state-of-the-art denoisers are plugged into an iterative algorithm that alternates between a denoising step and the inversion of the observation operator. While these tools offer flexibility, the convergence of the resulting algorithm may be difficult to analyse. In this paper, we plug a state-of-the-art denoiser, based on a Gaussian mixture model, in the iterations of an alternating direction method of multipliers and prove the algorithm is guaranteed to converge. Moreover, we build upon the concept of scene-adapted priors where we learn a model targeted to a specific scene being imaged, and apply the proposed method to address the hyperspectral sharpening problem.