S. Ata, Anila Tabassum, Ifra Shaheed, Ijaz ul Mohsin, N. Alwadai, M. Al Huwayz, M. Iqbal, A. Nazir
{"title":"Adsorption Thermodynamics, Modeling, and Kinetics Studies for the Removal of Lead Ions Using ZnO Nanorods","authors":"S. Ata, Anila Tabassum, Ifra Shaheed, Ijaz ul Mohsin, N. Alwadai, M. Al Huwayz, M. Iqbal, A. Nazir","doi":"10.1155/2023/7740674","DOIUrl":null,"url":null,"abstract":"In the present investigation, zinc oxide nanorods (ZnO-NR) were synthesized via the hydrothermal method using ZnCl2 as a zinc ion precursor in the presence of cetyltrimethylammonium bromide. Synthesized ZnO-NR was featured using advanced techniques including XRD, PL, SEM, and UV-visible spectroscopy. The role of these assynthesized ZnO-NR was evaluated for the sequestration of lead ions in batch mode. The elimination of lead ions was achieved at pH 6-7 using a 0.06 g adsorbent dose, 25 min contact time, 25 mg/L initial lead ion concentration, 323 K temperature, and 200 rpm agitation speed. A thermodynamic study revealed the endothermic nature of lead ion sequestration onto ZnO-NR. The lead ion sequestration followed kinetic (pseudo-second-order) and isotherm (Langmuir) models. The lead ions were eliminated up to 142 mg/g at the optimum level of affecting variables. The ZnO-NR might be a potential adsorbent for lead ion removal from industrial effluents.","PeriodicalId":7279,"journal":{"name":"Adsorption Science & Technology","volume":"115 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Adsorption Science & Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2023/7740674","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In the present investigation, zinc oxide nanorods (ZnO-NR) were synthesized via the hydrothermal method using ZnCl2 as a zinc ion precursor in the presence of cetyltrimethylammonium bromide. Synthesized ZnO-NR was featured using advanced techniques including XRD, PL, SEM, and UV-visible spectroscopy. The role of these assynthesized ZnO-NR was evaluated for the sequestration of lead ions in batch mode. The elimination of lead ions was achieved at pH 6-7 using a 0.06 g adsorbent dose, 25 min contact time, 25 mg/L initial lead ion concentration, 323 K temperature, and 200 rpm agitation speed. A thermodynamic study revealed the endothermic nature of lead ion sequestration onto ZnO-NR. The lead ion sequestration followed kinetic (pseudo-second-order) and isotherm (Langmuir) models. The lead ions were eliminated up to 142 mg/g at the optimum level of affecting variables. The ZnO-NR might be a potential adsorbent for lead ion removal from industrial effluents.