A New Robust Resonance Based Wavelet Decomposition Cepstral Features for Phoneme Recoszgnition

Ihsan Al-Hassani, O. Al-Dakkak, Abdlnaser Assami
{"title":"A New Robust Resonance Based Wavelet Decomposition Cepstral Features for Phoneme Recoszgnition","authors":"Ihsan Al-Hassani, O. Al-Dakkak, Abdlnaser Assami","doi":"10.36478/rjasci.2019.250.257","DOIUrl":null,"url":null,"abstract":"Robust Automatic Speech Recognition (ASR) is a challenging task that has been an active research subject for the last 20 years. And still results are very modest in the highly noisy environments. In this study, we propose a new speech parameterization method based on concatenating two wavelet packet decompositions, one decomposition using low Q-factor wavelet and another with high Q-factor wavelet, to extract speech features suitable for ASR task in noisy conditions. Experiments on TIMIT dataset for phonemes recognition show that the proposed wavelet-based features outperform MFCC in all noisy conditions.","PeriodicalId":21010,"journal":{"name":"Research Journal of Applied Sciences, Engineering and Technology","volume":"1 1","pages":"250-257"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research Journal of Applied Sciences, Engineering and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.36478/rjasci.2019.250.257","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Robust Automatic Speech Recognition (ASR) is a challenging task that has been an active research subject for the last 20 years. And still results are very modest in the highly noisy environments. In this study, we propose a new speech parameterization method based on concatenating two wavelet packet decompositions, one decomposition using low Q-factor wavelet and another with high Q-factor wavelet, to extract speech features suitable for ASR task in noisy conditions. Experiments on TIMIT dataset for phonemes recognition show that the proposed wavelet-based features outperform MFCC in all noisy conditions.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种新的基于鲁棒共振的小波分解倒谱特征用于音素识别
鲁棒自动语音识别(ASR)是一项具有挑战性的研究课题,近20年来一直是研究热点。在高噪声环境下,结果仍然是非常有限的。在本研究中,我们提出了一种新的基于串联两个小波包分解的语音参数化方法,一个是低q因子小波分解,另一个是高q因子小波分解,以提取适合噪声条件下ASR任务的语音特征。在TIMIT数据集上进行的音素识别实验表明,所提出的基于小波的特征在所有噪声条件下都优于MFCC。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Numerical study optimation design of CPU cooling system analysis using CFD method Development and implementation of the MobILcaps application for the teaching and development of information literacy in Higher Education Semi-supervised labelling of chest x-ray images using unsupervised clustering for ground-truth generation Technical and economic appraisal for harnessing a proposed hybrid energy system nexus for power generation and CO2 mitigation in Cross River State, Nigeria Geopolymer vs ordinary portland cement: review of the 3-d printing of concrete
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1