Disinfection of Human Amniotic Membrane Using a Hydrodynamic System with Ozonated Water

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS ACS Applied Bio Materials Pub Date : 2022-01-06 DOI:10.1080/01919512.2021.2022452
Sílvia Móbille Awoyama, H. C. Carvalho, Túlia de Souza Botelho, Sandra Irene Sprogis dos Santos, Debora Alicia Buendía Palacios, Sebastian San Martín Henríque, R. Zângaro, Carlos José de Lima, A. B. Fernandes
{"title":"Disinfection of Human Amniotic Membrane Using a Hydrodynamic System with Ozonated Water","authors":"Sílvia Móbille Awoyama, H. C. Carvalho, Túlia de Souza Botelho, Sandra Irene Sprogis dos Santos, Debora Alicia Buendía Palacios, Sebastian San Martín Henríque, R. Zângaro, Carlos José de Lima, A. B. Fernandes","doi":"10.1080/01919512.2021.2022452","DOIUrl":null,"url":null,"abstract":"ABSTRACT Human amniotic membrane (hAM) has a great potential in regenerative medicine as it can be disinfected, preserved, and stored. The present study evaluated a hydrodynamic system that uses ozonated water for disinfecting hAM and assessed possible morphological alterations using histological analysis and scanning electron microscopy (SEM). hAM fragments were experimentally contaminated with Staphylococcus aureus (103 CFU/mL) and submitted to disinfection processes for 5, 10 and 15 minutes (1.95, 3.9 and 5.85 mg/cm2 (O3), respectively). The results of the water microbiological analysis showed that no microbial growth was detected in all water samples. The hAM surface monitoring with swab method and the analysis of fragment inoculated directly into the culture media revealed that no microbial growth was detected after 10 and 15 minutes. The SEM and histological analysis of hAM revealed that morphological alterations in the epithelium began after 10 minutes 3.9 mg/cm2 (O3) of the disinfection process, and significant changes in the epithelial cells were observed after 15 minutes (5.85 mg/cm2 (O3)). These findings indicates that the structural integrity of hAM was maintained during the process and suggest that the technique is a promising system to disinfect this biological material.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2022-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1080/01919512.2021.2022452","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

ABSTRACT Human amniotic membrane (hAM) has a great potential in regenerative medicine as it can be disinfected, preserved, and stored. The present study evaluated a hydrodynamic system that uses ozonated water for disinfecting hAM and assessed possible morphological alterations using histological analysis and scanning electron microscopy (SEM). hAM fragments were experimentally contaminated with Staphylococcus aureus (103 CFU/mL) and submitted to disinfection processes for 5, 10 and 15 minutes (1.95, 3.9 and 5.85 mg/cm2 (O3), respectively). The results of the water microbiological analysis showed that no microbial growth was detected in all water samples. The hAM surface monitoring with swab method and the analysis of fragment inoculated directly into the culture media revealed that no microbial growth was detected after 10 and 15 minutes. The SEM and histological analysis of hAM revealed that morphological alterations in the epithelium began after 10 minutes 3.9 mg/cm2 (O3) of the disinfection process, and significant changes in the epithelial cells were observed after 15 minutes (5.85 mg/cm2 (O3)). These findings indicates that the structural integrity of hAM was maintained during the process and suggest that the technique is a promising system to disinfect this biological material.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
臭氧化水水动力系统对人羊膜的消毒
人羊膜可消毒、保存和储存,在再生医学中具有巨大的潜力。本研究评估了使用臭氧水消毒火腿的水动力系统,并使用组织学分析和扫描电子显微镜(SEM)评估了可能的形态学改变。实验用金黄色葡萄球菌(103cfu /mL)污染火腿碎片,消毒5、10和15分钟(分别为1.95、3.9和5.85 mg/cm2 (O3))。水微生物分析结果表明,所有水样均未检测到微生物生长。用棉签法对hAM表面进行监测,并对直接接种到培养基中的片段进行分析,结果显示,接种10分钟和15分钟后均未检测到微生物生长。扫描电镜和组织学分析显示,消毒10分钟(3.9 mg/cm2 (O3))后,上皮细胞开始发生形态学改变,消毒15分钟(5.85 mg/cm2 (O3))后,上皮细胞发生显著变化。这些发现表明,在此过程中,火腿的结构完整性得到了保持,这表明该技术是一种很有前途的消毒系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
期刊最新文献
A Systematic Review of Sleep Disturbance in Idiopathic Intracranial Hypertension. Advancing Patient Education in Idiopathic Intracranial Hypertension: The Promise of Large Language Models. Anti-Myelin-Associated Glycoprotein Neuropathy: Recent Developments. Approach to Managing the Initial Presentation of Multiple Sclerosis: A Worldwide Practice Survey. Association Between LACE+ Index Risk Category and 90-Day Mortality After Stroke.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1