A Synergetic Model for Implementing Big Data in Organizations

IF 0.8 4区 计算机科学 Q4 COMPUTER SCIENCE, INFORMATION SYSTEMS International Journal of Web Services Research Pub Date : 2019-01-01 DOI:10.4018/978-1-5225-7501-6.ch027
Mohanad Halaweh, Ahmed El Massry
{"title":"A Synergetic Model for Implementing Big Data in Organizations","authors":"Mohanad Halaweh, Ahmed El Massry","doi":"10.4018/978-1-5225-7501-6.ch027","DOIUrl":null,"url":null,"abstract":"The term BIG DATA has been increasingly used recently. Big data refers to the massive amount of data that are processed and analyzed using sophisticated technology to gain relevant insights that will help top executives with the decision-making process. This study is an attempt to investigate the big data implementation in organizations. The literature review reveals an initial model of indicators that might affect big data implementation. This model was examined and extended by primary data collected from key people (CEO and managers) from ten organizations. The extended model of indicators, which is the result from this research, includes the factors that would affect the success or failure of big data implementation in organizations. The research findings showed the following factors: top management support, organizational change, IT infrastructure, skilled professional, contents (i.e. data), data strategy, data privacy and security.","PeriodicalId":54936,"journal":{"name":"International Journal of Web Services Research","volume":"24 1","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Web Services Research","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.4018/978-1-5225-7501-6.ch027","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 3

Abstract

The term BIG DATA has been increasingly used recently. Big data refers to the massive amount of data that are processed and analyzed using sophisticated technology to gain relevant insights that will help top executives with the decision-making process. This study is an attempt to investigate the big data implementation in organizations. The literature review reveals an initial model of indicators that might affect big data implementation. This model was examined and extended by primary data collected from key people (CEO and managers) from ten organizations. The extended model of indicators, which is the result from this research, includes the factors that would affect the success or failure of big data implementation in organizations. The research findings showed the following factors: top management support, organizational change, IT infrastructure, skilled professional, contents (i.e. data), data strategy, data privacy and security.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
组织实施大数据的协同模型
“大数据”这个词最近被越来越多地使用。大数据指的是使用复杂技术对大量数据进行处理和分析,以获得有助于高层管理人员决策过程的相关见解。本研究试图调查大数据在组织中的实施情况。文献综述揭示了一个可能影响大数据实施的指标的初始模型。该模型通过从十个组织的关键人员(CEO和经理)收集的原始数据进行了检验和扩展。本研究的扩展指标模型包含了影响组织实施大数据成功或失败的因素。研究结果显示以下因素:高层管理支持、组织变革、IT基础设施、熟练的专业人员、内容(即数据)、数据策略、数据隐私和安全。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Web Services Research
International Journal of Web Services Research 工程技术-计算机:软件工程
CiteScore
2.40
自引率
0.00%
发文量
19
审稿时长
>12 weeks
期刊介绍: The International Journal of Web Services Research (IJWSR) is the first refereed, international publication featuring the latest research findings and industry solutions involving all aspects of Web services technology. This journal covers advancements, standards, and practices of Web services, as well as identifies emerging research topics and defines the future of Web services on grid computing, multimedia, and communication. IJWSR provides an open, formal publication for high quality articles developed by theoreticians, educators, developers, researchers, and practitioners for those desiring to stay abreast of challenges in Web services technology.
期刊最新文献
A Quasi-Newton Matrix Factorization-Based Model for Recommendation A Service Recommendation Algorithm Based on Self-Attention Mechanism and DeepFM Secure Cloud Storage and Retrieval of Personal Health Data From Smart Wearable Devices With Privacy-Preserving Techniques User Interaction Within Online Innovation Communities Research on a New Reconstruction Technology and Evaluation Method for 3D Digital Core Pore Structure
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1