Linear waves in a slowly rotating, compressible and perfectly conducting gas embedded in magnetic and gravitational fields

Chen Biao, Yin Chun-lin
{"title":"Linear waves in a slowly rotating, compressible and perfectly conducting gas embedded in magnetic and gravitational fields","authors":"Chen Biao,&nbsp;Yin Chun-lin","doi":"10.1016/0146-6364(80)90026-2","DOIUrl":null,"url":null,"abstract":"<div><p>We discuss the dispersion relation of local linear waves in a compressible and perfectly conducting gas possessing magnetic and gravitational fields in a slowly rotating frame of reference. Instead of the full energy equation and a gas law, a not necessarily adiabatic equation of state <em>p</em>=<em>p</em>(<em>ϱ</em>) is used to close the system of equations, — an arguably flexible way of treatment when we are not clear about the contributions by radiation and conductivity to the energy transport.</p><p>We give a general dimensionless dispersion relation, (8). This reduces to (9) if the magnetic field B is zero; to (10) if, further, rotation φ is zero; to the relation for accoustic waves (11), if further the gravitational field G is zero. When B is not zero, we consider various cases with the propagation vector K always perpendicular to B: the relation now reduces to (13) if K is not perpendicular to φ; to (14) if, further, K is parallel to G; to (15) if <em>φ</em>=0; to the relation for last magneto-accoustic waves (16) if G=0. It reduces to (17) if K is perpendicular to G; to the fast magneto-accoustic waves (18), if, further, <em>φ</em>=0. It reduces to (19) if K is perpendicular to φ and to (20), if, further, K is parallel to G.</p><p>Our study shows that, in general, there are no pure modes, only hybrids. In particular, a rotation gives rise to modes that are dependent on the latitude, which we call “physico-geometrical” waves.</p><p>The present study is preliminary, and we may expect even more interesting results when we take into consideration the energy equation and the effects of radiation.</p></div>","PeriodicalId":100241,"journal":{"name":"Chinese Astronomy","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"1980-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/0146-6364(80)90026-2","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Astronomy","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/0146636480900262","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We discuss the dispersion relation of local linear waves in a compressible and perfectly conducting gas possessing magnetic and gravitational fields in a slowly rotating frame of reference. Instead of the full energy equation and a gas law, a not necessarily adiabatic equation of state p=p(ϱ) is used to close the system of equations, — an arguably flexible way of treatment when we are not clear about the contributions by radiation and conductivity to the energy transport.

We give a general dimensionless dispersion relation, (8). This reduces to (9) if the magnetic field B is zero; to (10) if, further, rotation φ is zero; to the relation for accoustic waves (11), if further the gravitational field G is zero. When B is not zero, we consider various cases with the propagation vector K always perpendicular to B: the relation now reduces to (13) if K is not perpendicular to φ; to (14) if, further, K is parallel to G; to (15) if φ=0; to the relation for last magneto-accoustic waves (16) if G=0. It reduces to (17) if K is perpendicular to G; to the fast magneto-accoustic waves (18), if, further, φ=0. It reduces to (19) if K is perpendicular to φ and to (20), if, further, K is parallel to G.

Our study shows that, in general, there are no pure modes, only hybrids. In particular, a rotation gives rise to modes that are dependent on the latitude, which we call “physico-geometrical” waves.

The present study is preliminary, and we may expect even more interesting results when we take into consideration the energy equation and the effects of radiation.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在一个缓慢旋转,可压缩和完美传导气体嵌入磁场和引力场的线性波
讨论了在慢旋转参照系中具有磁场和引力场的可压缩完美导电气体中局部线性波的色散关系。代替完整的能量方程和气体定律,一个不一定是绝热的状态方程p=p(ϱ)被用来关闭方程组,当我们不清楚辐射和电导率对能量传输的贡献时,这是一种灵活的处理方式。我们给出一个一般的无量纲色散关系,(8)。如果磁场B为零,则可简化为(9);更进一步,旋转φ为零时,转到(10);与声波(11)的关系,如果引力场G为零。当B不为零时,我们考虑传播向量K总是垂直于B的各种情况:如果K不垂直于φ,则关系现在简化为(13);进一步,如果K平行于G,则为(14);φ=0时为(15);到G=0时末次磁声波(16)的关系。如果K垂直于G,则为(17);对于快速磁声波(18),更进一步,φ=0。如果K垂直于φ,则降为(19),如果进一步,K平行于g,则降为(20)。我们的研究表明,在一般情况下,没有纯模态,只有杂化。特别是,旋转会产生依赖于纬度的模式,我们称之为“物理几何”波。目前的研究是初步的,当我们考虑到能量方程和辐射的影响时,我们可能会期待更有趣的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Subject index Errata Author index Supernova remnants of known age and X-radiation The effect of an ellipsoidal distribution of star velocities on galactic density waves
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1