{"title":"Methanogenesis and Methane Oxidation in Paddy Fields under Organic Fertilization","authors":"C. Kim, Denver I. Walitang, T. Sa","doi":"10.5338/kjea.2021.40.4.34","DOIUrl":null,"url":null,"abstract":"BACKGROUND: Global warming is one of the most pressing environmental issues which concomitantly complicates global climate change. Methane emission is a balance between methanogenesis and methane consumption, both of which are driven by microbial actions in different ecosystems producing methane, one of the major greenhouse gases. Paddy fields are major sources of anthropogenic methane emissions and could be compounded by organic fertilization. METHODS AND RESULTS: Literature reviews were conducted to give an overview of the global warming conditions and to present the relationship of carbon and methane to greenhouse gas emissions, and the need to understand the underlying processes of methane emission. A more extensive review was done from studies on methane emission in paddy fields under organic fertilization with greater emphasis on long term amendments. Changes in paddy soils due to organic fertilization include alterations of the physicochemical properties and changes in biological components. There are diverse phylogenetic groups of methanogens and methane oxidizing bacteria involved in methane emission. Also, multiple factors influence methanogenesis and methane oxidation in rice paddy fields under organic fertilization and they should be greatly considered when developing mitigating steps in methane emission in paddy fields especially under long term organic fertilization. CONCLUSION(S): This review showed that organic fertilization, particularly for long term management practices, influenced both physicochemical and biological components of the paddy fields which could ultimately affect methanogenesis, methane oxidation, and methane emission. Understanding interrelated factors affecting methane emission helps create ways to mitigate their impact on global warming and climate change.","PeriodicalId":17872,"journal":{"name":"Korean Journal of Environmental Agriculture","volume":"28 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Korean Journal of Environmental Agriculture","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5338/kjea.2021.40.4.34","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
BACKGROUND: Global warming is one of the most pressing environmental issues which concomitantly complicates global climate change. Methane emission is a balance between methanogenesis and methane consumption, both of which are driven by microbial actions in different ecosystems producing methane, one of the major greenhouse gases. Paddy fields are major sources of anthropogenic methane emissions and could be compounded by organic fertilization. METHODS AND RESULTS: Literature reviews were conducted to give an overview of the global warming conditions and to present the relationship of carbon and methane to greenhouse gas emissions, and the need to understand the underlying processes of methane emission. A more extensive review was done from studies on methane emission in paddy fields under organic fertilization with greater emphasis on long term amendments. Changes in paddy soils due to organic fertilization include alterations of the physicochemical properties and changes in biological components. There are diverse phylogenetic groups of methanogens and methane oxidizing bacteria involved in methane emission. Also, multiple factors influence methanogenesis and methane oxidation in rice paddy fields under organic fertilization and they should be greatly considered when developing mitigating steps in methane emission in paddy fields especially under long term organic fertilization. CONCLUSION(S): This review showed that organic fertilization, particularly for long term management practices, influenced both physicochemical and biological components of the paddy fields which could ultimately affect methanogenesis, methane oxidation, and methane emission. Understanding interrelated factors affecting methane emission helps create ways to mitigate their impact on global warming and climate change.