Towards Exascale Computing for High Energy Physics: The ATLAS Experience at ORNL

V. Ananthraj, K. De, S. Jha, A. Klimentov, D. Oleynik, S. Oral, André Merzky, R. Mashinistov, S. Panitkin, P. Svirin, M. Turilli, J. Wells, Sean R. Wilkinson
{"title":"Towards Exascale Computing for High Energy Physics: The ATLAS Experience at ORNL","authors":"V. Ananthraj, K. De, S. Jha, A. Klimentov, D. Oleynik, S. Oral, André Merzky, R. Mashinistov, S. Panitkin, P. Svirin, M. Turilli, J. Wells, Sean R. Wilkinson","doi":"10.1109/eScience.2018.00086","DOIUrl":null,"url":null,"abstract":"Traditionally, the ATLAS experiment at Large Hadron Collider (LHC) has utilized distributed resources as provided by the Worldwide LHC Computing Grid (WLCG) to support data distribution, data analysis and simulations. For example, the ATLAS experiment uses a geographically distributed grid of approximately 200,000 cores continuously (250 000 cores at peak), (over 1,000 million core-hours per year) to process, simulate, and analyze its data (todays total data volume of ATLAS is more than 300 PB). After the early success in discovering a new particle consistent with the long-awaited Higgs boson, ATLAS is continuing the precision measurements necessary for further discoveries. Planned high-luminosity LHC upgrade and related ATLAS detector upgrades, that are necessary for physics searches beyond Standard Model, pose serious challenge for ATLAS computing. Data volumes are expected to increase at higher energy and luminosity, causing the storage and computing needs to grow at a much higher pace than the flat budget technology evolution (see Fig. 1). The need for simulation and analysis will overwhelm the expected capacity of WLCG computing facilities unless the range and precision of physics studies will be curtailed.","PeriodicalId":6476,"journal":{"name":"2018 IEEE 14th International Conference on e-Science (e-Science)","volume":"27 1","pages":"341-342"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 14th International Conference on e-Science (e-Science)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/eScience.2018.00086","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Traditionally, the ATLAS experiment at Large Hadron Collider (LHC) has utilized distributed resources as provided by the Worldwide LHC Computing Grid (WLCG) to support data distribution, data analysis and simulations. For example, the ATLAS experiment uses a geographically distributed grid of approximately 200,000 cores continuously (250 000 cores at peak), (over 1,000 million core-hours per year) to process, simulate, and analyze its data (todays total data volume of ATLAS is more than 300 PB). After the early success in discovering a new particle consistent with the long-awaited Higgs boson, ATLAS is continuing the precision measurements necessary for further discoveries. Planned high-luminosity LHC upgrade and related ATLAS detector upgrades, that are necessary for physics searches beyond Standard Model, pose serious challenge for ATLAS computing. Data volumes are expected to increase at higher energy and luminosity, causing the storage and computing needs to grow at a much higher pace than the flat budget technology evolution (see Fig. 1). The need for simulation and analysis will overwhelm the expected capacity of WLCG computing facilities unless the range and precision of physics studies will be curtailed.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
迈向高能物理的百亿亿次计算:在ORNL的ATLAS经验
传统上,大型强子对撞机(LHC)的ATLAS实验利用世界大型强子对撞机计算网格(WLCG)提供的分布式资源支持数据分发、数据分析和模拟。例如,ATLAS实验使用连续约20万核(峰值为25万核)的地理分布式网格(每年超过10亿核小时)来处理、模拟和分析其数据(目前ATLAS的总数据量超过300 PB)。在早期成功地发现了与期待已久的希格斯玻色子一致的新粒子之后,ATLAS正在继续进行进一步发现所需的精确测量。计划中的高亮度LHC升级和相关的ATLAS探测器升级是标准模型之外的物理搜索所必需的,这对ATLAS计算构成了严峻的挑战。数据量预计将在更高的能量和亮度下增加,导致存储和计算需求以比扁平预算技术发展更快的速度增长(见图1)。除非物理研究的范围和精度受到限制,否则对模拟和分析的需求将超过WLCG计算设施的预期容量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Occam: Software Environment for Creating Reproducible Research Smart Data Scouting in Professional Soccer: Evaluating Passing Performance Based on Position Tracking Data Improving LBFGS Optimizer in PyTorch: Knowledge Transfer from Radio Interferometric Calibration to Machine Learning Nordic Exome Variant Catalogue a Web Resource for Genomic Data Browsing Survey on Research Software Engineering in the Netherlands
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1