Measurement of smoke generation rate using a full-scale hot smoke test for building smoke exhaust systems

IF 1.1 4区 工程技术 Q3 CONSTRUCTION & BUILDING TECHNOLOGY International Journal of Ventilation Pub Date : 2020-12-07 DOI:10.1080/14733315.2020.1853881
C. Su, ShiuanCheng Wang, YaoHan Chen, CheYi Wu
{"title":"Measurement of smoke generation rate using a full-scale hot smoke test for building smoke exhaust systems","authors":"C. Su, ShiuanCheng Wang, YaoHan Chen, CheYi Wu","doi":"10.1080/14733315.2020.1853881","DOIUrl":null,"url":null,"abstract":"Abstract In some countries, test standards have been adopted which measure the effectiveness of smoke exhaust systems in clearing out heat and smoke produced separately. However, because these standards provide no quantitative provisions for dealing with the amount of visual smoke, there is an unclear correlation between the amount of smoke generated and the fire load. This paper applied the homogeneity concept of using a smoke collection box to examine the smoke generation rate of a smoke generator using CO2 as the driving gas. To avoid using the previous visual method of judging the rates, this research used measurement equipment to conduct a scientific analysis. Thus, the results were more objective. The equipment used included a Closed-Circuit Television (CCTV) Camera, a thermocouple, a traditional P-type smoke detector, a digital R-type smoke detector, and light attenuation measurement equipment. Under release pressures of 40, 60 and 80 psi, a 15% smoke density required smoke generation at 6.50, 8.42 and 10.46 m3/s, respectively. Achieving a homogeneous distribution of smoke within the space was accomplished. The data obtained in the test could be used not only to judge the efficiency of a smoke exhaust system but also provide adjustment information for a smoke exhaust system.","PeriodicalId":55613,"journal":{"name":"International Journal of Ventilation","volume":"26 1","pages":"105 - 121"},"PeriodicalIF":1.1000,"publicationDate":"2020-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Ventilation","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/14733315.2020.1853881","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract In some countries, test standards have been adopted which measure the effectiveness of smoke exhaust systems in clearing out heat and smoke produced separately. However, because these standards provide no quantitative provisions for dealing with the amount of visual smoke, there is an unclear correlation between the amount of smoke generated and the fire load. This paper applied the homogeneity concept of using a smoke collection box to examine the smoke generation rate of a smoke generator using CO2 as the driving gas. To avoid using the previous visual method of judging the rates, this research used measurement equipment to conduct a scientific analysis. Thus, the results were more objective. The equipment used included a Closed-Circuit Television (CCTV) Camera, a thermocouple, a traditional P-type smoke detector, a digital R-type smoke detector, and light attenuation measurement equipment. Under release pressures of 40, 60 and 80 psi, a 15% smoke density required smoke generation at 6.50, 8.42 and 10.46 m3/s, respectively. Achieving a homogeneous distribution of smoke within the space was accomplished. The data obtained in the test could be used not only to judge the efficiency of a smoke exhaust system but also provide adjustment information for a smoke exhaust system.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用全尺寸热烟试验测量建筑物排烟系统的产烟率
在一些国家,已经采用了测试标准来衡量排烟系统在分别清除产生的热量和烟雾方面的有效性。然而,由于这些标准没有提供处理视觉烟雾量的定量规定,因此产生的烟雾量与火灾负荷之间的相关性不明确。本文采用采用集烟箱的同质性概念,对以CO2为驱动气体的产烟器的产烟率进行了研究。为了避免使用以往的视觉判断方法,本研究使用测量设备进行科学分析。因此,结果更加客观。所使用的设备包括闭路电视(CCTV)摄像机、热电偶、传统p型感烟探测器、数字r型感烟探测器和光衰减测量设备。在40、60和80 psi的释放压力下,15%的烟雾密度要求产生的烟雾分别为6.50、8.42和10.46 m3/s。实现了烟雾在空间内均匀分布。试验得到的数据不仅可以用来判断排烟系统的效率,还可以为排烟系统的调整提供信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Ventilation
International Journal of Ventilation CONSTRUCTION & BUILDING TECHNOLOGY-ENERGY & FUELS
CiteScore
3.50
自引率
6.70%
发文量
7
审稿时长
>12 weeks
期刊介绍: This is a peer reviewed journal aimed at providing the latest information on research and application. Topics include: • New ideas concerned with the development or application of ventilation; • Validated case studies demonstrating the performance of ventilation strategies; • Information on needs and solutions for specific building types including: offices, dwellings, schools, hospitals, parking garages, urban buildings and recreational buildings etc; • Developments in numerical methods; • Measurement techniques; • Related issues in which the impact of ventilation plays an important role (e.g. the interaction of ventilation with air quality, health and comfort); • Energy issues related to ventilation (e.g. low energy systems, ventilation heating and cooling loss); • Driving forces (weather data, fan performance etc).
期刊最新文献
Assessing thermal resilience to overheating in a Belgian apartment: impact of building parameters Passive ventilation for building not subjected to solar radiation Experimental study on the periodic pulsating ventilation by fluidic oscillator on pollutant dispersion and ventilation performance in enclosed environment Compartmentalization and ventilation system impacts on air and contaminant transport for multifamily buildings Controllable baffle-type exhaust-hood in home kitchen
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1