Heat Waves Amplify the Urban Canopy Heat Island in Brno, Czechia

Zdeněk Janků, P. Dobrovolný
{"title":"Heat Waves Amplify the Urban Canopy Heat Island in Brno, Czechia","authors":"Zdeněk Janků, P. Dobrovolný","doi":"10.3390/meteorology1040030","DOIUrl":null,"url":null,"abstract":"This study used homogenised mean, maximum, and minimum daily temperatures from 12 stations located in Brno, Czechia, during the 2011–2020 period to analyse heat waves (HW) and their impact on the canopy urban heat island (UHI). HWs were recognized as at least three consecutive days with Tx ≥ 30 °C and urban–rural and intra-urban differences in their measures were analysed. To express the HWs contribution to UHI, we calculated the UHI intensities (UHII) separately during and outside of HWs to determine the heat magnitude (HM). Our results show that all HW measures are significantly higher in urban areas. UHII is mostly positive, on average 0.65 °C; however, day-time UHII is clearly greater (1.93 °C). Furthermore, day-time UHII is amplified during HWs, since HM is on average almost 0.5 °C and in LCZ 2 it is even 0.9 °C. Land use parameters correlate well with UHII and HM at night, but not during the day, indicating that other factors can affect the air temperature extremity. Considering a long-term context, the air temperature extremity has been significantly increasing recently in the region, together with a higher frequency of circulation types that favour the occurrence of HWs, and the last decade mainly contributed to this increase.","PeriodicalId":100061,"journal":{"name":"Agricultural Meteorology","volume":"74 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Agricultural Meteorology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/meteorology1040030","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This study used homogenised mean, maximum, and minimum daily temperatures from 12 stations located in Brno, Czechia, during the 2011–2020 period to analyse heat waves (HW) and their impact on the canopy urban heat island (UHI). HWs were recognized as at least three consecutive days with Tx ≥ 30 °C and urban–rural and intra-urban differences in their measures were analysed. To express the HWs contribution to UHI, we calculated the UHI intensities (UHII) separately during and outside of HWs to determine the heat magnitude (HM). Our results show that all HW measures are significantly higher in urban areas. UHII is mostly positive, on average 0.65 °C; however, day-time UHII is clearly greater (1.93 °C). Furthermore, day-time UHII is amplified during HWs, since HM is on average almost 0.5 °C and in LCZ 2 it is even 0.9 °C. Land use parameters correlate well with UHII and HM at night, but not during the day, indicating that other factors can affect the air temperature extremity. Considering a long-term context, the air temperature extremity has been significantly increasing recently in the region, together with a higher frequency of circulation types that favour the occurrence of HWs, and the last decade mainly contributed to this increase.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
热浪放大了捷克布尔诺城市冠层热岛
本研究利用2011-2020年期间捷克布尔诺12个站点的平均、最高和最低日气温,分析了热浪(HW)及其对城市冠层热岛(UHI)的影响。HWs被认为至少连续三天Tx≥30°C,并分析其测量的城乡和城市内差异。为了表达高温天气对热岛的贡献,我们分别计算了高温天气期间和高温天气之外的热岛强度(UHII),以确定热量大小(HM)。我们的研究结果表明,城市地区的所有HW指标都明显更高。UHII多为阳性,平均0.65°C;然而,白天的UHII明显更大(1.93°C)。此外,白天的UHII在高温期间被放大,因为高温平均接近0.5°C,在lcz2甚至达到0.9°C。土地利用参数与UHII和HM在夜间相关良好,但在白天不相关,表明其他因素可以影响气温极值。考虑到长期背景,该地区最近的气温极端值显著增加,同时有利于HWs发生的环流类型频率更高,而过去十年主要促成了这种增加。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Specific Features of the Land-Sea Contrast of Cloud Liquid Water Path in Northern Europe as Obtained from the Observations by the SEVIRI Instrument: Artefacts or Reality? Air Temperature Intermittency and Photofragment Excitation Espresso: A Global Deep Learning Model to Estimate Precipitation from Satellite Observations No City Left Behind: Building Climate Policy Bridges between the North and South Characteristics of Convective Parameters Derived from Rawinsonde and ERA5 Data Associated with Hailstorms in Northeastern Romania
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1