{"title":"A New Approach for Detecting Intrusions Using Jordan/Elman Neural Networks","authors":"H. Karimi, M. A. Montazeri, M. D. Jazi","doi":"10.1109/CANS.2008.15","DOIUrl":null,"url":null,"abstract":"Intrusion detection system (IDS) is an effective tool that can help to prevent unauthorized access to network resources. A good intrusion detection system should have higher detection rate and lower false positive. A new classification system using Jordan/Elman (J/L) neural network for ID is proposed to detect intrusions from normal connections with satisfactory detection rate and false positive. Experiments and evaluations were performed with the KDD Cup 99 intrusion detection database. This system yields the same performance level or better as compared to other existing systems. Comparison with other approach based on different evaluation parameters showed that proposed approach has noticeable performance with detection rate 99.594% and false positive 0.406% and can classify the network connections with satisfactory performance.","PeriodicalId":50026,"journal":{"name":"Journal of Systems Science & Complexity","volume":"78 1","pages":"62-68"},"PeriodicalIF":2.6000,"publicationDate":"2008-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Systems Science & Complexity","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1109/CANS.2008.15","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 1
Abstract
Intrusion detection system (IDS) is an effective tool that can help to prevent unauthorized access to network resources. A good intrusion detection system should have higher detection rate and lower false positive. A new classification system using Jordan/Elman (J/L) neural network for ID is proposed to detect intrusions from normal connections with satisfactory detection rate and false positive. Experiments and evaluations were performed with the KDD Cup 99 intrusion detection database. This system yields the same performance level or better as compared to other existing systems. Comparison with other approach based on different evaluation parameters showed that proposed approach has noticeable performance with detection rate 99.594% and false positive 0.406% and can classify the network connections with satisfactory performance.
入侵检测系统(IDS)是防止非法访问网络资源的有效工具。一个好的入侵检测系统应该具有较高的检测率和较低的误报率。提出了一种利用Jordan/Elman (J/L)神经网络对ID进行分类的新方法,该方法可以检测正常连接的入侵,检测率令人满意,且没有出现误报。利用KDD Cup 99入侵检测数据库进行了实验和评估。与其他现有系统相比,该系统产生相同或更好的性能水平。与其他基于不同评价参数的方法进行比较,结果表明,该方法具有显著的性能,检测率为99.594%,误报率为0.406%,能够对网络连接进行分类,并取得满意的分类效果。
期刊介绍:
The Journal of Systems Science and Complexity is dedicated to publishing high quality papers on mathematical theories, methodologies, and applications of systems science and complexity science. It encourages fundamental research into complex systems and complexity and fosters cross-disciplinary approaches to elucidate the common mathematical methods that arise in natural, artificial, and social systems. Topics covered are:
complex systems,
systems control,
operations research for complex systems,
economic and financial systems analysis,
statistics and data science,
computer mathematics,
systems security, coding theory and crypto-systems,
other topics related to systems science.