Automatic detection of hard and soft exudates from retinal fundus images

IF 0.3 Q4 COMPUTER SCIENCE, THEORY & METHODS Acta Universitatis Sapientiae Informatica Pub Date : 2019-08-01 DOI:10.2478/ausi-2019-0005
Bálint Borsos, L. Nagy, David Iclanzan, L. Szilágyi
{"title":"Automatic detection of hard and soft exudates from retinal fundus images","authors":"Bálint Borsos, L. Nagy, David Iclanzan, L. Szilágyi","doi":"10.2478/ausi-2019-0005","DOIUrl":null,"url":null,"abstract":"Abstract According to WHO estimates, 400 million people suffer from diabetes, and this number is likely to double by year 2030. Unfortunately, diabetes can have severe complications like glaucoma or retinopathy, which both can cause blindness. The main goal of our research is to provide an automated procedure that can detect retinopathy-related lesions of the retina from fundus images. This paper focuses on the segmentation of so-called white lesions of the retina that include hard and soft exudates. The established procedure consists of three main phases. The preprocessing step compensates the various luminosity patterns found in retinal images, using background and foreground pixel extraction and a data normalization operator similar to Z-transform. This is followed by a modified SLIC algorithm that provides homogeneous superpixels in the image. The final step is an ANN-based classification of pixels using fifteen features extracted from the neighborhood of the pixels taken from the equalized images and from the properties of the superpixel where the pixel belongs. The proposed methodology was tested using high-resolution fundus images originating from the IDRiD database. Pixelwise accuracy is characterized by a 54% Dice score in average, but the presence of exudates is detected with 94% precision.","PeriodicalId":41480,"journal":{"name":"Acta Universitatis Sapientiae Informatica","volume":"22 1","pages":"65 - 79"},"PeriodicalIF":0.3000,"publicationDate":"2019-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Universitatis Sapientiae Informatica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/ausi-2019-0005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 12

Abstract

Abstract According to WHO estimates, 400 million people suffer from diabetes, and this number is likely to double by year 2030. Unfortunately, diabetes can have severe complications like glaucoma or retinopathy, which both can cause blindness. The main goal of our research is to provide an automated procedure that can detect retinopathy-related lesions of the retina from fundus images. This paper focuses on the segmentation of so-called white lesions of the retina that include hard and soft exudates. The established procedure consists of three main phases. The preprocessing step compensates the various luminosity patterns found in retinal images, using background and foreground pixel extraction and a data normalization operator similar to Z-transform. This is followed by a modified SLIC algorithm that provides homogeneous superpixels in the image. The final step is an ANN-based classification of pixels using fifteen features extracted from the neighborhood of the pixels taken from the equalized images and from the properties of the superpixel where the pixel belongs. The proposed methodology was tested using high-resolution fundus images originating from the IDRiD database. Pixelwise accuracy is characterized by a 54% Dice score in average, but the presence of exudates is detected with 94% precision.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
视网膜眼底图像硬、软渗出物的自动检测
据世界卫生组织估计,全球有4亿人患有糖尿病,到2030年,这一数字可能会翻一番。不幸的是,糖尿病会有严重的并发症,如青光眼或视网膜病变,这两种疾病都会导致失明。我们研究的主要目标是提供一种自动化程序,可以从眼底图像中检测视网膜病变相关的视网膜病变。本文的重点是分割所谓的白色病变的视网膜,包括硬和软渗出。既定程序包括三个主要阶段。预处理步骤补偿视网膜图像中发现的各种亮度模式,使用背景和前景像素提取和类似于z变换的数据归一化算子。然后是一个改进的SLIC算法,该算法在图像中提供均匀的超像素。最后一步是基于人工神经网络的像素分类,使用从均衡图像中提取的像素的邻域和像素所属的超像素的属性中提取的15个特征。使用来自IDRiD数据库的高分辨率眼底图像对提出的方法进行了测试。像素精度的特征是骰子得分平均为54%,但渗出物的检测精度为94%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Acta Universitatis Sapientiae Informatica
Acta Universitatis Sapientiae Informatica COMPUTER SCIENCE, THEORY & METHODS-
自引率
0.00%
发文量
9
期刊最新文献
E-super arithmetic graceful labelling of Hi(m, m), Hi(1) (m, m) and chain of even cycles On agglomeration-based rupture degree in networks and a heuristic algorithm On domination in signed graphs Connected certified domination edge critical and stable graphs Eccentric connectivity index in transformation graph Gxy+
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1