Accurate Prediction Using Triangular Type-2 Fuzzy Linear Regression: Simplifying Complex T2F Calculations

IF 1.9 Q3 COMPUTER SCIENCE, CYBERNETICS IEEE Systems Man and Cybernetics Magazine Pub Date : 2021-09-12 DOI:10.1109/msmc.2022.3148569
A. Zare, A. Shoeibi, Narges Shafaei Bajestani, Parisa Moridian, R. Alizadehsani, Majid Halaji, A. Khosravi
{"title":"Accurate Prediction Using Triangular Type-2 Fuzzy Linear Regression: Simplifying Complex T2F Calculations","authors":"A. Zare, A. Shoeibi, Narges Shafaei Bajestani, Parisa Moridian, R. Alizadehsani, Majid Halaji, A. Khosravi","doi":"10.1109/msmc.2022.3148569","DOIUrl":null,"url":null,"abstract":"Many studies have been performed to handle the uncertainties in the data using type-1 fuzzy regression (FR). Few type-2 fuzzy (T2F) regression studies have used interval type-2 (IT2) for indeterminate modeling using type-1 fuzzy membership. The current article proposes a triangular T2F regression (TT2FR) model to ameliorate the efficiency of the model by handling the uncertainty in the data. The triangular secondary membership function is used instead of widely used interval-type models. In the proposed model, vagueness in primary and secondary fuzzy sets is minimized, and also, a specified x-plane of the observed value is included in the same ${\\alpha}$-plane of the predicted value. Complex calculations of the T2F model are simplified by reducing the 3D T2F set into 2D IT2 fuzzy models.","PeriodicalId":43649,"journal":{"name":"IEEE Systems Man and Cybernetics Magazine","volume":"86 1","pages":"51-60"},"PeriodicalIF":1.9000,"publicationDate":"2021-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Systems Man and Cybernetics Magazine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/msmc.2022.3148569","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, CYBERNETICS","Score":null,"Total":0}
引用次数: 2

Abstract

Many studies have been performed to handle the uncertainties in the data using type-1 fuzzy regression (FR). Few type-2 fuzzy (T2F) regression studies have used interval type-2 (IT2) for indeterminate modeling using type-1 fuzzy membership. The current article proposes a triangular T2F regression (TT2FR) model to ameliorate the efficiency of the model by handling the uncertainty in the data. The triangular secondary membership function is used instead of widely used interval-type models. In the proposed model, vagueness in primary and secondary fuzzy sets is minimized, and also, a specified x-plane of the observed value is included in the same ${\alpha}$-plane of the predicted value. Complex calculations of the T2F model are simplified by reducing the 3D T2F set into 2D IT2 fuzzy models.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用三角型2型模糊线性回归进行精确预测:简化复杂的T2F计算
利用1型模糊回归(FR)处理数据中的不确定性进行了许多研究。很少有类型-2模糊(T2F)回归研究使用区间类型-2 (IT2)对使用类型-1模糊隶属度的不确定建模。本文提出了一种三角T2F回归模型,通过处理数据中的不确定性来提高模型的效率。采用三角次隶属函数代替了广泛使用的区间型模型。该模型最大限度地降低了主模糊集和次模糊集的模糊性,并将观测值的指定x平面包含在预测值的同一x平面中。通过将三维T2F集简化为二维IT2模糊模型,简化了复杂的T2F模型计算。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Systems Man and Cybernetics Magazine
IEEE Systems Man and Cybernetics Magazine COMPUTER SCIENCE, CYBERNETICS-
自引率
6.20%
发文量
60
期刊最新文献
Report of the First IEEE International Summer School (Online) on Environments—Classes, Agents, Roles, Groups, and Objects and Its Applications [Conference Reports] Saeid Nahavandi: Academic, Innovator, Technopreneur, and Thought Leader [Society News] IEEE Foundation IEEE Feedback Artificial Intelligence for the Social Internet of Things: Analysis and Modeling Using Collaborative Technologies [Special Section Editorial]
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1