{"title":"Theoretical model of radiation heat wave in two-dimensional cylinder with sleeve","authors":"Cheng-Jian Xiao, Guang-Wei Meng, Yingkui Zhao","doi":"10.1063/5.0119240","DOIUrl":null,"url":null,"abstract":"A semi-analytical model is constructed to investigate two-dimensional radiation heat waves (Marshak waves) in a low-Z foam cylinder with a sleeve made of high-Z material. In this model, the energy loss to the high-Z wall is regarded as the primary two-dimensional effect and is taken into account via an indirect approach in which the energy loss is subtracted from the drive source and the wall loss is ignored. The interdependent Marshak waves in the low-Z foam and high-Z wall are used to estimate the energy loss. The energies and the heat front position calculated using the model under typical inertial confinement fusion conditions are verified by simulations. The validated model provides a theoretical tool for studying two-dimensional Marshak waves and should be helpful in providing further understanding of radiation transport.","PeriodicalId":54221,"journal":{"name":"Matter and Radiation at Extremes","volume":"5 1","pages":""},"PeriodicalIF":4.8000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Matter and Radiation at Extremes","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1063/5.0119240","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
A semi-analytical model is constructed to investigate two-dimensional radiation heat waves (Marshak waves) in a low-Z foam cylinder with a sleeve made of high-Z material. In this model, the energy loss to the high-Z wall is regarded as the primary two-dimensional effect and is taken into account via an indirect approach in which the energy loss is subtracted from the drive source and the wall loss is ignored. The interdependent Marshak waves in the low-Z foam and high-Z wall are used to estimate the energy loss. The energies and the heat front position calculated using the model under typical inertial confinement fusion conditions are verified by simulations. The validated model provides a theoretical tool for studying two-dimensional Marshak waves and should be helpful in providing further understanding of radiation transport.
期刊介绍:
Matter and Radiation at Extremes (MRE), is committed to the publication of original and impactful research and review papers that address extreme states of matter and radiation, and the associated science and technology that are employed to produce and diagnose these conditions in the laboratory. Drivers, targets and diagnostics are included along with related numerical simulation and computational methods. It aims to provide a peer-reviewed platform for the international physics community and promote worldwide dissemination of the latest and impactful research in related fields.