{"title":"Orientation and depth estimation for femoral components using image sensor, magnetometer and inertial sensors in THR surgeries.","authors":"Jiyang Gao, Shaojie Su, Hong Chen, Zhihua Wang","doi":"10.1109/EMBC.2015.7318958","DOIUrl":null,"url":null,"abstract":"Malposition of the acetabular and femoral component has long been recognized as an important cause of dislocation after total hip replacement (THR) surgeries. In order to help surgeons improve the positioning accuracy of the components, a visual-aided system for THR surgeries that could estimate orientation and depth of femoral component is proposed. The sensors are fixed inside the femoral prosthesis trial and checkerboard patterns are printed on the internal surface of the acetabular prosthesis trial. An extended Kalman filter is designed to fuse the data from inertial sensors and the magnetometer orientation estimation. A novel image processing algorithm for depth estimation is developed. The algorithms have been evaluated under the simulation with rotation quaternion and translation vector and the experimental results shows that the root mean square error (RMSE) of the orientation estimation is less then 0.05 degree and the RMSE for depth estimation is 1mm. Finally, the femoral head is displayed in 3D graphics in real time to help surgeons with the component positioning.","PeriodicalId":72689,"journal":{"name":"Conference proceedings : ... Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual Conference","volume":"24 1","pages":"2737-40"},"PeriodicalIF":0.0000,"publicationDate":"2015-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Conference proceedings : ... Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EMBC.2015.7318958","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Malposition of the acetabular and femoral component has long been recognized as an important cause of dislocation after total hip replacement (THR) surgeries. In order to help surgeons improve the positioning accuracy of the components, a visual-aided system for THR surgeries that could estimate orientation and depth of femoral component is proposed. The sensors are fixed inside the femoral prosthesis trial and checkerboard patterns are printed on the internal surface of the acetabular prosthesis trial. An extended Kalman filter is designed to fuse the data from inertial sensors and the magnetometer orientation estimation. A novel image processing algorithm for depth estimation is developed. The algorithms have been evaluated under the simulation with rotation quaternion and translation vector and the experimental results shows that the root mean square error (RMSE) of the orientation estimation is less then 0.05 degree and the RMSE for depth estimation is 1mm. Finally, the femoral head is displayed in 3D graphics in real time to help surgeons with the component positioning.