Kiwon Sohn, Salman Hussain, Matthew Bradnan, Owen May
{"title":"Re-Sizable Quadrupedal Robot Platform: HARQ","authors":"Kiwon Sohn, Salman Hussain, Matthew Bradnan, Owen May","doi":"10.1115/IMECE2020-23105","DOIUrl":null,"url":null,"abstract":"\n This paper presents the development of kinematically adjustable quadrupedal robot platform, HARQ (Human Assistive and Robust Quadruped) which has been designed and built by ART (Assistive Robot Team) in University of Hartford since 2019. The main objective of HARQ is to assist various tasks of human workers in dangerous work environments such as disasters. In this paper, the mechanical design and building processes of HARQ which focused on kinematic adaptivity and low-cost manufacturing as its main technical design requirements are described first. Then, the kinematic analysis and its implementation in the low-level body controller of the quadrupedal robot are described. Lastly, HARQ is tested and evaluated both in a simulated environment using its virtual model and in an outdoor environment using the physically built platform with various whole body motions which are designed for the robot’s navigation.","PeriodicalId":23585,"journal":{"name":"Volume 7A: Dynamics, Vibration, and Control","volume":"22 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 7A: Dynamics, Vibration, and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/IMECE2020-23105","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This paper presents the development of kinematically adjustable quadrupedal robot platform, HARQ (Human Assistive and Robust Quadruped) which has been designed and built by ART (Assistive Robot Team) in University of Hartford since 2019. The main objective of HARQ is to assist various tasks of human workers in dangerous work environments such as disasters. In this paper, the mechanical design and building processes of HARQ which focused on kinematic adaptivity and low-cost manufacturing as its main technical design requirements are described first. Then, the kinematic analysis and its implementation in the low-level body controller of the quadrupedal robot are described. Lastly, HARQ is tested and evaluated both in a simulated environment using its virtual model and in an outdoor environment using the physically built platform with various whole body motions which are designed for the robot’s navigation.