A Fully Convolutional Neural Network for Rapid Displacement Estimation in ARFI Imaging

Derek Y. Chan, D. Morris, M. Palmeri, K. Nightingale
{"title":"A Fully Convolutional Neural Network for Rapid Displacement Estimation in ARFI Imaging","authors":"Derek Y. Chan, D. Morris, M. Palmeri, K. Nightingale","doi":"10.1109/ULTSYM.2019.8925911","DOIUrl":null,"url":null,"abstract":"Ultrasound elasticity imaging in soft tissue with acoustic radiation force requires extracting displacement information, typically on the order of several microns, from raw data. In this work, we implement a fully convolutional neural network for ultrasound displacement estimation. We present a novel method for generating ultrasound training data, in which virtual displacement volumes are created with a combination of randomly-seeded ellipsoids. Network performance was tested on the virtual displacement volumes as well as an experimental phantom dataset and human in vivo prostate data. In simulated and phantom data, the proposed neural network accurately reconstructed the ARFI displacements, performing similarly to a conventional phase-shift displacement estimation algorithm. Application of the trained network to in vivo prostate data enabled the visualization of the prostatic urethra and peripheral zone.","PeriodicalId":6759,"journal":{"name":"2019 IEEE International Ultrasonics Symposium (IUS)","volume":"61 1","pages":"111-114"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Ultrasonics Symposium (IUS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ULTSYM.2019.8925911","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Ultrasound elasticity imaging in soft tissue with acoustic radiation force requires extracting displacement information, typically on the order of several microns, from raw data. In this work, we implement a fully convolutional neural network for ultrasound displacement estimation. We present a novel method for generating ultrasound training data, in which virtual displacement volumes are created with a combination of randomly-seeded ellipsoids. Network performance was tested on the virtual displacement volumes as well as an experimental phantom dataset and human in vivo prostate data. In simulated and phantom data, the proposed neural network accurately reconstructed the ARFI displacements, performing similarly to a conventional phase-shift displacement estimation algorithm. Application of the trained network to in vivo prostate data enabled the visualization of the prostatic urethra and peripheral zone.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于全卷积神经网络的ARFI成像快速位移估计
利用声辐射力对软组织进行超声弹性成像,需要从原始数据中提取位移信息,通常在几微米的量级上。在这项工作中,我们实现了一个用于超声波位移估计的全卷积神经网络。我们提出了一种生成超声训练数据的新方法,其中虚拟位移体积是由随机种子椭球的组合创建的。在虚拟位移体积、实验幻影数据集和人体内前列腺数据上测试了网络性能。在模拟和模拟数据中,所提出的神经网络精确地重建了ARFI位移,其性能与传统的相移位移估计算法相似。将训练好的网络应用于体内前列腺数据,实现了前列腺尿道和外周区的可视化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Development of a 1-D Linear Phased Ultrasonic Array for Intravascular Sonoporation Growth, Properties, and Applications of Al1-xScxN Thin Films Measurement of Thrombolysis Enhanced by EkoSonic Catheter-Based Endovascular Therapy Power Switching Noise Removal in Sensitive Doppler Applications A Hydrogel Glove for Emergency Ultrasound Screening
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1