Quantum entanglement, sum of squares, and the log rank conjecture

B. Barak, Pravesh Kothari, David Steurer
{"title":"Quantum entanglement, sum of squares, and the log rank conjecture","authors":"B. Barak, Pravesh Kothari, David Steurer","doi":"10.1145/3055399.3055488","DOIUrl":null,"url":null,"abstract":"For every constant ε>0, we give an exp(Õ(∞n))-time algorithm for the 1 vs 1 - ε Best Separable State (BSS) problem of distinguishing, given an n2 x n2 matrix ℳ corresponding to a quantum measurement, between the case that there is a separable (i.e., non-entangled) state ρ that ℳ accepts with probability 1, and the case that every separable state is accepted with probability at most 1 - ε. Equivalently, our algorithm takes the description of a subspace 𝒲 ⊆ 𝔽n2 (where 𝔽 can be either the real or complex field) and distinguishes between the case that contains a rank one matrix, and the case that every rank one matrix is at least ε far (in 𝓁2 distance) from 𝒲. To the best of our knowledge, this is the first improvement over the brute-force exp(n)-time algorithm for this problem. Our algorithm is based on the sum-of-squares hierarchy and its analysis is inspired by Lovett's proof (STOC '14, JACM '16) that the communication complexity of every rank-n Boolean matrix is bounded by Õ(√n).","PeriodicalId":20615,"journal":{"name":"Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing","volume":"92 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2017-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"28","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3055399.3055488","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 28

Abstract

For every constant ε>0, we give an exp(Õ(∞n))-time algorithm for the 1 vs 1 - ε Best Separable State (BSS) problem of distinguishing, given an n2 x n2 matrix ℳ corresponding to a quantum measurement, between the case that there is a separable (i.e., non-entangled) state ρ that ℳ accepts with probability 1, and the case that every separable state is accepted with probability at most 1 - ε. Equivalently, our algorithm takes the description of a subspace 𝒲 ⊆ 𝔽n2 (where 𝔽 can be either the real or complex field) and distinguishes between the case that contains a rank one matrix, and the case that every rank one matrix is at least ε far (in 𝓁2 distance) from 𝒲. To the best of our knowledge, this is the first improvement over the brute-force exp(n)-time algorithm for this problem. Our algorithm is based on the sum-of-squares hierarchy and its analysis is inspired by Lovett's proof (STOC '14, JACM '16) that the communication complexity of every rank-n Boolean matrix is bounded by Õ(√n).
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
量子纠缠,平方和和对数秩猜想
对于ε>0的每一个常数,我们给出了一个exp(Õ(∞n))时间算法来解决1 vs 1 - ε最佳可分离状态(BSS)问题,该问题给出了一个与量子测量相对应的n2 x n2矩阵,在存在一个可分离(即非纠缠)状态ρ且其接受概率为1的情况下,与存在一个可分离(即非纠缠)状态ρ且其接受概率不超过1 - ε的情况下进行区分。同样地,我们的算法取一子空间𝒲≥𝔽n2(其中的∈可以是实域也可以是复域)的描述,并区分包含一个秩1矩阵的情况,以及每个秩1矩阵离𝒲至少有ε远(以𝓁2为距离)的情况。据我们所知,这是针对该问题的暴力破解exp(n)时间算法的第一个改进。我们的算法基于平方和层次结构,其分析灵感来自于Lovett的证明(STOC '14, JACM '16),即每个n阶布尔矩阵的通信复杂性都由Õ(√n)限制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Online service with delay A simpler and faster strongly polynomial algorithm for generalized flow maximization Low rank approximation with entrywise l1-norm error Fast convergence of learning in games (invited talk) Surviving in directed graphs: a quasi-polynomial-time polylogarithmic approximation for two-connected directed Steiner tree
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1