EPR and single-particle hybridization

Yuan Tian, Jian Li, Kaiguo Yuan, Chaoyang Li, Hengji Li, Xiubo Chen
{"title":"EPR and single-particle hybridization","authors":"Yuan Tian, Jian Li, Kaiguo Yuan, Chaoyang Li, Hengji Li, Xiubo Chen","doi":"10.26421/QIC21.7-8-3","DOIUrl":null,"url":null,"abstract":"Quantum key distribution cannot satisfy some users without quantum capability, so semi-quantum key distribution emerges as the times required. Semi-quantum key distribution protocol is described as Alice has quantum ability to prepare and measure qubits with an arbitrary basis, while Bob only measures qubits with the computational basis or reflects qubits to Alice. However, most existing semi-quantum key distribution protocols have been performed with low eavesdropping detection probability. In this paper, we present an innovative semi-quantum key distribution protocol with high efficiency based on EPR and single-particle hybridization, in which the specific contents of {\\scriptsize CTRL} or {\\scriptsize SIFT} operations have been newly defined. Then, the security analysis indicates the proposed protocol is asymptotically secure with more high eavesdropping detection probability against individual eavesdropping attacks. Moreover, the efficiency analysis shows that the presented protocol is more efficient than similar literatures.","PeriodicalId":20904,"journal":{"name":"Quantum Inf. Comput.","volume":"88 1","pages":"563-576"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum Inf. Comput.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26421/QIC21.7-8-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Quantum key distribution cannot satisfy some users without quantum capability, so semi-quantum key distribution emerges as the times required. Semi-quantum key distribution protocol is described as Alice has quantum ability to prepare and measure qubits with an arbitrary basis, while Bob only measures qubits with the computational basis or reflects qubits to Alice. However, most existing semi-quantum key distribution protocols have been performed with low eavesdropping detection probability. In this paper, we present an innovative semi-quantum key distribution protocol with high efficiency based on EPR and single-particle hybridization, in which the specific contents of {\scriptsize CTRL} or {\scriptsize SIFT} operations have been newly defined. Then, the security analysis indicates the proposed protocol is asymptotically secure with more high eavesdropping detection probability against individual eavesdropping attacks. Moreover, the efficiency analysis shows that the presented protocol is more efficient than similar literatures.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
EPR和单粒子杂交
量子密钥分发无法满足某些没有量子能力的用户,因此半量子密钥分发应运而生。半量子密钥分发协议描述为Alice具有量子能力,可以任意基准备和测量量子位,而Bob仅使用计算基测量量子位或将量子位反射给Alice。然而,大多数现有的半量子密钥分发协议都是在低窃听检测概率下执行的。本文提出了一种基于EPR和单粒子杂交的创新型高效半量子密钥分发协议,其中重新定义了{\scriptsize CTRL}或{\scriptsize SIFT}操作的具体内容。然后,安全性分析表明,该协议具有渐近安全性,对个体窃听攻击具有较高的窃听检测概率。此外,效率分析表明,该协议比同类文献效率更高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A quantization of interacting particle systems Guidelines to use the ICSM for developing quantum-classical systems A Comparative Analysis of Quantum-based Approaches for Scalable and Efficient Data mining in Cloud Environments On the quantum complexity of integration of a function with unknown singularity Site recurrence for continuous-time open quantum walks on the line
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1