Catalytic Oxidation of Toluene to Bibenzyl and Stilbene

K. Liu, Y. Yamazaki
{"title":"Catalytic Oxidation of Toluene to Bibenzyl and Stilbene","authors":"K. Liu, Y. Yamazaki","doi":"10.1627/JPI1959.18.45","DOIUrl":null,"url":null,"abstract":"A new type of benzylic oxidation of toluene in vapor-phase was described in which toluene was dehydrodimerized to bibenzyl and stilbene over Bi2O3-SnO2, catalyst in the temperature range 400∼600°C. Effects of temperature, contact time, and oxygen-to-toluene ratio were investigated in detail, and a proposal of reaction scheme was made.The results obtained show that reactions with longer contact time and higher oxygen-to-toluene ratio are favorable to the formation of stilbene, while shorter contact time and lower oxygen-to-toluene ratio favor the formation of bibenzyl. A reaction route for the formation of stilbene consistent with these data involves the following consecutive steps; toluene→benzylic intermediates→bibenzyl→stilbene. This type of benzylic oxidation is considered to be analogous to the oxidative dehydroaromatization of C3-C4 olefins.","PeriodicalId":9596,"journal":{"name":"Bulletin of The Japan Petroleum Institute","volume":"20 1","pages":"45-49"},"PeriodicalIF":0.0000,"publicationDate":"1976-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of The Japan Petroleum Institute","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1627/JPI1959.18.45","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

A new type of benzylic oxidation of toluene in vapor-phase was described in which toluene was dehydrodimerized to bibenzyl and stilbene over Bi2O3-SnO2, catalyst in the temperature range 400∼600°C. Effects of temperature, contact time, and oxygen-to-toluene ratio were investigated in detail, and a proposal of reaction scheme was made.The results obtained show that reactions with longer contact time and higher oxygen-to-toluene ratio are favorable to the formation of stilbene, while shorter contact time and lower oxygen-to-toluene ratio favor the formation of bibenzyl. A reaction route for the formation of stilbene consistent with these data involves the following consecutive steps; toluene→benzylic intermediates→bibenzyl→stilbene. This type of benzylic oxidation is considered to be analogous to the oxidative dehydroaromatization of C3-C4 olefins.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
甲苯催化氧化制联苯和二苯乙烯
介绍了一种新型的甲苯气相苯氧化反应,在400 ~ 600℃的温度范围内,甲苯在Bi2O3-SnO2催化剂上脱氢二聚得到联苯和苯乙烯。详细考察了温度、接触时间、氧甲苯比等因素对反应的影响,提出了反应方案。结果表明,较长的接触时间和较高的氧甲苯比有利于二苯乙烯的生成,较短的接触时间和较低的氧甲苯比有利于联苯的生成。与这些数据相一致的合成二苯乙烯的反应路线包括以下连续步骤:甲苯→苄基的中间体→bibenzyl→对称二苯代乙烯。这种类型的苯氧化被认为类似于C3-C4烯烃的氧化脱氢芳构化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Catalytic Cracking of Heavy Oil with Iron Oxide-based Catalysts Using Hydrogen and Oxygen Species from Steam Desulfurization of Heavy Oil with Iron Oxide-based Catalysts Using Steam Improvement of Silica–alumina Supports for Diesel Oxidation Catalysts through Control of Both Composition and Pore Structure Effect of Low-concentration Furfural on Sulfur Amino Acid Biosynthesis in Saccharomyces cerevisiae Development of Highly Active and Durable Platinum Core-shell Catalysts for Polymer Electrolyte Fuel Cells
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1