Parallax

Giorgos Xanthakis, Giorgos Saloustros, Nikos Batsaras, Anastasios Papagiannis, A. Bilas
{"title":"Parallax","authors":"Giorgos Xanthakis, Giorgos Saloustros, Nikos Batsaras, Anastasios Papagiannis, A. Bilas","doi":"10.1145/3472883.3487012","DOIUrl":null,"url":null,"abstract":"Key-value (KV) separation is a technique that introduces randomness in the I/O access patterns to reduce I/O amplification in LSM-based key-value stores. KV separation has a significant drawback that makes it less attractive: Delete and update operations in modern workloads result in frequent and expensive garbage collection (GC) in the value log. In this paper, we design and implement Parallax, which proposes hybrid KV placement to reduce GC overhead significantly and increases the benefits of using a log. We first model the benefits of KV separation for different KV pair sizes. We use this model to classify KV pairs in three categories small, medium, and large. Then, Parallax uses different approaches for each KV category: It always places large values in a log and small values in place. For medium values it uses a mixed strategy that combines the benefits of using a log and eliminates GC overhead as follows: It places medium values in a log for all but the last few (typically one or two) levels in the LSM structure, where it performs a full compaction, merges values in place, and reclaims log space without the need for GC. We evaluate Parallax against RocksDB that places all values in place and BlobDB that always performs KV separation. We find that Parallax increases throughput by up to 12.4x and 17.83x, decreases I/O amplification by up to 27.1x and 26x, and increases CPU efficiency by up to 18.7x and 28x, respectively, for all but scan-based YCSB workloads.","PeriodicalId":91949,"journal":{"name":"Proceedings of the ... ACM Symposium on Cloud Computing [electronic resource] : SOCC ... ... SoCC (Conference)","volume":"83 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ... ACM Symposium on Cloud Computing [electronic resource] : SOCC ... ... SoCC (Conference)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3472883.3487012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

Key-value (KV) separation is a technique that introduces randomness in the I/O access patterns to reduce I/O amplification in LSM-based key-value stores. KV separation has a significant drawback that makes it less attractive: Delete and update operations in modern workloads result in frequent and expensive garbage collection (GC) in the value log. In this paper, we design and implement Parallax, which proposes hybrid KV placement to reduce GC overhead significantly and increases the benefits of using a log. We first model the benefits of KV separation for different KV pair sizes. We use this model to classify KV pairs in three categories small, medium, and large. Then, Parallax uses different approaches for each KV category: It always places large values in a log and small values in place. For medium values it uses a mixed strategy that combines the benefits of using a log and eliminates GC overhead as follows: It places medium values in a log for all but the last few (typically one or two) levels in the LSM structure, where it performs a full compaction, merges values in place, and reclaims log space without the need for GC. We evaluate Parallax against RocksDB that places all values in place and BlobDB that always performs KV separation. We find that Parallax increases throughput by up to 12.4x and 17.83x, decreases I/O amplification by up to 27.1x and 26x, and increases CPU efficiency by up to 18.7x and 28x, respectively, for all but scan-based YCSB workloads.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
视差
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
OneEdge Towards Reliable AI for Source Code Understanding Chronus Open Research Problems in the Cloud Building Reliable Cloud Services Using Coyote Actors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1